
GPU for Game Computing

Avi Bleiweiss

GPU transition
CISC to RISC

Dynamic architecture
Compute, bandwidth

Data parallel
Often algorithm redesign

Game computing
Simulation, AI, Audio

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

FYSI, physics simulation case study

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

Deeply programmable
Vertex, geometry, pixel

Precise and flexible
32 bit IEEE float

Unified shader model

Compute pipeline
Simplified modality, API

Vertex Shader

Geometry Shader

Pixel Shader

Rasterizer

vertices

vertices

primitives

pixels

pixels

Video Memory

Raw compute power
48 pixel engines, each
Executes 4 float mad per cycle
@650 MHz -> 250 GFlops

Shader model 3.0
Dynamic branching

Shader model 4.0
Integer arithmetic

Memory
256 bits wide, double edge
@775 MHz -> 50 GBytes/sec
0.5 GByte video memory

I/O, PCI Express x16
4 GBytes/sec
Multi-GPU shared resources

Relatively small caches

Grid formation
ALU heavy architecture

Stream data memory system

Many in flight threads
Hide memory latency

No static data

No read-modify-write buffers

Scatter
Indirect memory write (data[i] = x)
Populate data structures
Usually performed on CPU

Gather
Indirect memory read (x = data[i])
Access of data structures
Maps onto texture fetch

Input, multiple arrays
Different resolutions

Grid computation
No inter-cell dependencies

Kernels
Applied to each grid element
High arithmetic intensity

Output, multiple arrays
Must have same resolution

Porting to GPU non-trivial
Significant speedup payoff

Efficient data structures
In video memory, sliver

GPU for computing cheap
None of display, texture filtering

Multi-GPU
Load partition, shared resources

0 1 2

3 4 5

6

3x3 Grid

7 active elements

2 sliver elements

No double precision float
Single float good enough

No pixel scatter
Self-modifying location expensive

Dedicated branch units
Both sides executed

Grid outputs limited
4/8 in DirectX 9/10, respectively

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

Complex, non-intuitive
for general computation

Quest for RISC API
Reduced interface set core

Full screen quad

RISC API for rendering
Ray tracing

Hide graphics API
Underlying DirectX 9 & 10

Evolving hardware seamless

Scalable
Multi GPU support

Automatic multi passing
Overcome GPU limitations

Opaque device pointer(s)
Single, multi-GPU

Interface objects

Object actions
Create, assign, remove

ShaderKernel

Target (2D/3D)Scratch

Texture (2D/3D)Resource

GPU ObjectAbstract Object

Data types
Scalars, vectors, matrices

Load, store
Resource, scratch, respectively

Kernel parameters
One time compile overhead

Compute invocation
Across grid cells

Debug, scratch dump

A single format
For both resource, scratch

Four float components

Three component vector
Alpha channel for control

Three/four squared matrix
Three dimensional array

X Y Z C

00 01 02

10 11 12

20 21 22

vector

matrix

slice #0

slice #1

slice #2

Iterative
Recirculate scratches

Parallel setup paths
Resources, kernels

Implicit correlation
Scratches, kernel

Multi pass compute
Single kernel execution

Results CPU access

Assign

Unbind

Bind

Compute

Remove

scratchesresources kernels

results

Create

Remove

Create

Grid parallel traversal
Tiled pattern, ownership

Point sampled grid cells
VPOS for cell index

Relative resource address
Multi resolution resources

Dependent data access
Multi pass reduction

0 1 2

3 4 5

6 7
0 1

3 4

0 1 2 3

resources

0 1

2 3

scratches

2

5

6 7

0 1

3 4

2

5

6 7
0 1 2 3

0 1 2 3

3D (4x1x3)

2D (2x2)

2D (3x3)

2D (3x3)

2D (3x3)

Compute bound process

Asymmetric processing

Computation distribution
Simple grid subdivision

Synchronization overhead
PCI Express contention

Shared resources

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

Game engine
Simulation, visual rendering

Physics scope
Rigid, deformable bodies

Physics platforms
Multi core CPU, PPU, GPU

GPU assisted physics
Game play, effects

Physics

Rendering

scene
description

display

Physics scene description format
FYSL, GPU oriented

Consistent I/O abstraction
Simulation input and results

Stream API
Asynchronous, discrete simulation

GPU, CPU implementation
Performance analysis

Iterative physics pipeline
System Setup, Solver, Collision

Physics to rendering interface
Position, transform update

Compute Abstraction Layer
On top of DirectX API

Simulation control
Type, time step

Actors, hierarchical
Bounding volumes, meshes
Linear, angular motion

Joints, motion constraints
Spring, distance

Feedback
Path decision

Actor definition Joints definition

System Setup

Solver

Collision

results (FYSL)

initial scene (FYSL)

current state resolution

per step
next state resolution

detection and response

Grid based simulation
Euler method (x(t + dt) = x(t) + t * dx/dt;)

Geometry, property resources
Texture array

Portable shading library

Resume from last step
Result caching

Adaptive time step

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

Object space representation
Precise, CPU equivalent

Geometry in video memory
Multiple arbitrary meshes

GPU texture addressability
4K by 4K for 2D

Mesh representation
1D vertex and index buffers

Vertex and index buffers
Positions and faces, respectively

Counter clockwise triangles

vertex buffer

position # 0

position # 1

position # 2

position # 3

position # 4

face # 0 (0, 1, 2)

index buffer

0 1

2 3

4

5

6

position # 5

position # 6

triangular mesh

face # 1 (2, 1, 3)

face # 2 (1, 4, 3)

face # 3 (3, 4, 5)

face # 4 (5, 4, 6)

Mesh as a resource
2D video memory array

Three floats element
{x,y,z} and {i0,i1,i2}

Arbitrary dimensions
Padded as necessary

Dependent texture
For each triangle access

0 1 2

3 4 5

6

vertex buffer (3x3)

0 1 2

3 4

index buffer (3x2)

Many mesh scene

16 textures constraint

A single super mesh
Coalesces multiple meshes
Vertex and index uber buffer

Index buffer offset

Boundary sub mesh id

b # 0 b # 1 b # n

b # 0 b # 1

b # 1

b # n

b # n

1D composite

2D composite

Low creation overhead

Sub mesh collision
Tri-tri intersection, contact

Avoids self intersection
Multi pass compute

Intersect, response, integrate

Dependent texture access
Face to vertex fetch

GPU, processor array

Compute abstraction

Physics simulation

Mesh video mapping

Results, summary

GPU superior to CPU
Collision detection, response

Understand compute behavior
Grid distribution
Flow control, multi pass

Scalability across GPUs
More pipes, ALUs

Single CPU
No dual core, no SSE2

System performance
Physics process, no rendering

Shape based benchmarks
Linear motion

Absolute, normalized results

8655802 24 GeForce 7800

800650224GeForce 7900

775650316Radeon X1900

750625116Radeon X1800

70060034Radeon X1600

53334001(4)1Pentium 4

Memory (MHz)Core (MHz)ALUsPipesProcessor

7.5775367mesh update

30.138241300mesh-mesh

102

119

Ops

17.40587volume-volume

19

Texture

72

ALU

3.79impact

RatioShader Type

562768
(0.0002)

197508
(0.0001)

74793
(0.0004)

101404
(0.0004)

CPU

703
(0.177)

187
(0.171)

188
(0.164)

203
(0.231)

7800

482
(0.259)

47
(2.659)

110
(1.136)

125
(1.000)

tetrahedron128x128

247
(0.129)

30
(1.066)

16
(2.000)

32
(1.000)

mesh64x64
(62471 tris)

201
(0.154)

15
(2.067)

15
(2.067)

31
(1.000)

sphere256x256

220
(0.213)

15
(3.133)

31
(1.516)

47
(1.000)

aabb256x256

7900X1900X1800X1600Benchmark

Compute draw calls (figures in msec)

CPU wins for small grids
Expected, setup overhead

GPU faster elsewhere
Up to an order of magnitude

GPU Scalability
Flow control might be stalling

GeForce 7800/7900 slower
Across benchmarks

Unified shader architecture

Higher concurrency level
64 pixel engines
Flexible mix of scalar/vector

DirectX 10
Constant buffers
Texture array, indexing
Non-power-of-2 3D textures
3D render target

GPU game computing
Still a challenge

Parallel programming
Macro and micro level

Software productivity
Tools, tools, tools

Emerging CPU/GPU platforms
Adaptive load balance

Thank You!

Questions?

