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1 INTRODUCTION

Denali is a high-performance graphics and imaging system with excellent cost/performance characteristics, which
connects to a host computer through a high-bandwidth data channel. Denali is very well suited for a range of demanding
workstation application areas in 3D graphics and imaging, including mechanical CAD/CAE, scientific data visualization,
simulation, geophysical exploration, and imaging for medical, industrial, and earth resources applications. Denali’s
advanced architecture is unique in combining hardware assistance both for graphics rendering and for image processing,
so Denali will be an especially interesting option for applications that require both graphics and imaging. In rendering
operation, Denali is capable of drawing more than a million smooth-shaded, depth-buffered, 3D polygons per second.

The Denali architecture is based on a pipeline with very wide data paths and scalable parallelism at two different
pipeline stages. This double scalability allows for tuning the configuration and balancing the pipeline according to
the nature of the user’s graphics and image processing requirements. Denali’s implementation uses eight types of
proprietary application-specific integrated circuits (ASICs) as well as a standard, off-the-shelf, high performance
floating-point engine and standard video output circuits.

The graphics rendering functions that Denali performs in hardware and firmware include geometry transformations,
lighting calculations, smooth shading and depth cueing interpolations, depth buffer occlusion method (also called
Z-buffer), anti-aliasing of lines and polygon outlines, 2D and 3D texture mapping (with several choices of texture
sampling and filtering methods), environment mapping, stenciling, transparent surface rendering (both one-pass and
multi-pass methods), alpha compositing, and several methods of volume data rendering (See Section 3 for definitions of
these and other graphics terms). Denali also offers hardware support for fundamental image manipulation operations,
such as zooming and scaling, image rotation, warping, and contrast enhancement.

Denali has a double 1280x1024x24-bit frame buffer for double-buffered screen refresh. Off-screen frame buffer
memory can have up to 576 bit-planes for use as depth buffers, stencil buffers, texture storage, and double-precision
accumulation buffers to support full-screen anti-aliasing and other multi-pass advanced rendering techniques.

Denali provides a hardware cursor and further hardware support for functionality needed for interactive graphics
in a window environment, namely, window-specific control of double buffering, overlays, and color table selection.
Denali’s Zero Time Clear feature enhances double-buffered animation by eliminating the time cost for clearing the

color and depth buffers for each new frame.
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Initially, Denali is available with interfaces for two workstation families: Kubota Graphics’ Kenai workstations and
Digital Equipment Corporation’s AXP series. Kubota Graphics supplies the low-level graphics system software needed
to use Denali with each of these host platforms, as well as the standard, host-independent application programming
interface libraries that provide access to the supported graphics functionality.

This Technical Overview describes the Denali architecture and implementation, and reviews the meaning and import
of the graphics and imaging functions that it provides. Section 2 presents an introductory overview of the architecture
and packaging. Section 3 focuses on the graphics functionality. Section 4 presents more detailed descriptions of Denali’s
subsystems. Section 5 treats Denali’s applicability to image processing and volume rendering. Section 6 discusses
the software architecture. A future supplement to this overview will present quantitative performance data based on

standard benchmarks.

2 SYSTEM OVERVIEW

This section gives a brief overview of the Denali system, its architecture, and its packaging. The section on architecture
refers to a number of technical terms of computer graphics. Definitions of these terms and some discussion of their

import are contained in Sections 3 and 4.

2.1 Architecture
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Fig. 1. Denali Block Diagram

Figure 1 is a block diagram showing Denali’s organization as a pipeline with scalable parallel stages. Normally, in
graphics rendering, data flows from left to right in this diagram. An important and notable characteristic of the system,
(not explicitly shown in the diagram), is the use of very wide data paths and high bandwidth memory access throughout.
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The first parallel stage comprises from one to six Transformation and Rasterization Modules (TRM), interchangeably
denotes as Transform Engine Modules (TEM). Each TEM is a daughter board plugging into the Denali mother board,
containing a programmable Transform Engine (TE), several custom ASICs, and fast memory to support their functions.
The TEMs implement the first stages of the rendering pipeline. They perform rendering computations that are applied
on a per-primitive basis or a per-vertex basis, including the needed geometry transformations, and the lighting and
shading computations. Finally, the TEMs perform scan conversion, or rasterization of the primitives. The TEMs typically
work in parallel on different primitives making up a scene.

The output of the TEMs in rendering is a stream of pixel packets, each containing data pertaining to a specific screen
pixel location. The contents of each pixel packet arise from sampling the primitive at a point corresponding to the
pixel location, and typically involve interpolation of values specified at the primitive’s vertices. The per-pixel data can
include color, transparency, depth in the 3D scene of the corresponding point on the primitive (conventionally called
Z), texture coordinates, and other parameters used in advance rendering methods. Section 3.3 discusses he sampling
process and the nature of the sample data in more detail.

Denali’s second parallel stage comprises five, ten or twenty Footprint Modules (FM), we interchangeably note as
Frame Buffer Modules (FBM), which implement the last stages of the rendering pipeline. They perform the rendering
computations that are applied on a per-pixel basis. They also contain the raster display memories, the off-screen
raster memories (for double buffering, depth buffering, accumulation buffer, and texture storage), and per-pixel control
memory used for control of window-specific double buffering, overlays, and the Zero Time Clear function. The FBMs
work in parallel on different pixels.

Some of the per-pixel operations that the Frame Buffer Modules apply are comparison tests that control whether
new pixel data is written to the output buffer, as in depth buffering and stenciling. Otherwise, per-pixel processing
consists of accumulating the contributions of samples of possibly several different primitives that affect a pixel, or the
contributions of several samples of each primitive in multi-pass rendering methods. Such per-pixel computations arise
in anti-aliasing, in texture mapping, in transparent surface rendering, and in several other advanced graphics methods.
Section 3.3 expands on the FBM functionality in more detail and Section 4.4 gives more detail on its architecture.

The Pixel Network, or Router, located on the Denali motherboard, connects the TEM stage to the FBM stage. The
stream of pixel packets that comes from the parallel TEMs has no particular ordering with respect to pixel location. On
the other hand, the FBMs are pixel-location specific; each FBM contains a particular fixed (interleaved) set of pixel
locations. The Router is a highly parallel cross-bar switch, which distributes the pixel packets coming from the TEMs to
the correct FBMs. Section 4.3 gives more details on the Router.

At the beginning of the pipeline, the I/0 Processor ASIC (IOP) receives a stream of graphics command packets
from the host computer and distributes them among the TEMs. The Denali IOP communicates with a host-specific 1/0
processor, external to the Denali system. The host-specific IOP is typically a board which connects to the host’s DMA
channel (TURBOchannel™ for both the Kenai and AXP platforms). Section 4.1 discusses the IOP.

At the end of the pipeline, the pixel values that are stored in the FBM display buffers are used to refresh the CRT
display. The Video Output Section provides the display refresh functionality. It also includes the color look-up tables
and overlay control. It is discussed in more detail in Section 4.5.

The system also has a Read Back mode, in which data flows in the opposite direction. Some multi-pass rendering
methods, as well as image processing applications, use the Read Back mode to allow the TEs or the host to process data

from the frame buffers.
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2.2 Physical Packaging

Denali is implemented on a single large mother board measuring 14x16 inches, which has connectors to receive
daughter boards carrying the two types of parallel subsystems - six connectors for Transform Engine Modules and
twenty connectors for Frame Buffer Modules. Kubota Graphics offers several options for packaging of the Denali system.
There is an independent enclosure including power supply, which can be placed on a desktop or mounted vertically
with a supplied stand. Or, for some workstation models, the Denali board can be placed in the same enclosure as the
host workstation.

The rear panel has connectors for line power, the IOP connection, video output and stereo control signals. The Denali
IOP connects to the host-specific IOP with a 50-wire cable that can be up to 10 feet long. The mother board includes a

connector to accommodate an auxiliary low-resolution video board, described in Section 4.5.

3 GRAPHICS FUNCTIONALITY

This section presents Denali’s graphics rendering functionality. In the interest of clarity, some care is taken to review

the meanings of the relevant graphical terms and concepts.

3.1 The Role of the Host

Rendering is the process of producing a picture from a model. Modeling methods are usually specific to the application
domain, but 3D models will all include some form of geometry specification describing 3D objects to be drawn on
the 2D display surface. Graphics application programming interfaces (APIs) accept geometry specifications in terms
of defined primitive types. An application must express its application-specific geometry in terms of the primitives
defined by the API in use. Some APls accept higher-level primitives, such as text characters, complex polygons with
holes, or parametric curves and surfaces. Denali and most graphics hardware systems provide a shorter list of simpler
primitives. The run-time support for an API must decompose the application’s primitives into the Denali primitives
before passing them on to the low-level controlling software, which in tum passes the graphics commands to Denali.

The primitive types accepted by Denali are:

e Lists of points, defined by coordinates in a 3D model space, to be drawn as one or more pixels

o Lists of markers, which are points to be drawn with defined marker symbols

Lists of line segments, each defined by a pair of end points, called vertices

Polylines, which are chains of line segments joined end-to-end at common vertices

Filled rectangles

Circles and filled circles

Triangle lists and triangle strips
e Quadrilateral lists and quadrilateral meshes

o Sphere lists

The polyline primitive and the several polygon-based primitives are defined by vertices, and lists of edges, which
are line segments that join adjacent vertices. An important benefit of including polylines, triangle strip and mesh,
and quadrilateral mesh primitives in the Denali primitive set is that in these primitives each vertex is shared by two
or more edges or polygons. Thus, Denali needs to perform some vertex-specific operations, such as the geometry
transformations and lighting calculations, only once for each vertex of the primitive, rather than repeating them for
each polygon to which the vertex belongs (See Section 4.2).
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In addition to primitives, applications specify attributes that control how primitives are to be drawn. Attributes
include line width, marker type, color, stipple and hatch patterns, surface reflectance properties, locations and properties
of light sources, anti-aliasing control, geometry transformation parameters, and view definition parameters. Most
attributes are implemented as state variables of the rendering pipeline.

The application software on the host (and the supporting graphics API) draws a picture by traversing an application
object database and generating appropriate commands for the graphics subsystem. The graphics commands generated
by the host include commands to draw primitives, to set attributes, and to otherwise control the graphics system’s state
(with some APis, it is the application program itself that performs the traversal of the object data, while for other APis
it is the API’s run-time support software that performs the traversal of display lists or structures that the application
has defined).

Whatever the API and the nature of the application, the traversal of the object database on the host generates a stream
of Denali commands, which are passed via the host IOP to the Denali IOP, which distributes them to the Transform
Engine Modules for interpretation by the Transform Engines (TE).

3.2 Transform Engine

One of the necessary stages of rendering provided by the TEMs, and at the beginning of the rendering pipeline, is

geometry processing, which includes:

e The coordinate transformations that have to be applied to vertices in order to position the primitives with respect
to each other, with respect to the light sources., and with respect to the eye position and viewing direction.

o The transformations needed to project the 3D vertices to the viewing plane and map them to integer screen
coordinates.

o Clipping, which is the elimination from the pipeline of the primitives and parts of primitives that lie outside of
defined regions.

o Lighting computations specifically, the determination of the light reflected toward the viewer from the vertex

position on the surface under specified illumination, according to attributed surface reflectance properties.

The geometry processing, including lighting, is generally applied only to the vertices of the primitives. Clipping can
result in redefining a primitive, eliminating some vertices and creating new ones, when a primitive crosses a clipping
boundary. The coordinate transformations and viewing transformations reduce mostly to matrix multiplications, which
are basically floating-point multiply-accumulate operations. Evaluation of the lighting function at each vertex also
reduces mainly to floating-point multiply-accumulate operations. On the Denali, the Transform Engine processor

provides all the geometry processing. Section 4.2 shows how this processor is especially well suited to the task.

3.3 Linear Evaluator Array

After geometry processing, each vertex is represented by a pair of screen coordinates, an RGB color value, a depth
value (Z), possibly a transparency coefficient, and a pair or triplet of texture coordinates in the case of 2D or 3D
texture mapping, respectively. The next stage of the rendering pipeline consists of scan conversion or rasterization,
which determines for each primitive the screen pixel locations that it affects, and the corresponding values of the
relevant variables for each affected pixel, namely color, depth, alpha, texture coordinates, and, for anti-aliased lines, the
distance of the pixel from the line. In scan conversion, these per-pixel quantities may be determined for each pixel
by interpolating from the vertices of the primitive to its interior points. In particular, in smooth shading the color of
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each pixel is determined by interpolating the vertex colors that are the result of the lighting model computation at the
vertices, while in facet shading, every pixel in the primitive has the same color.

For scan conversion in Denali, the primitives are decomposed into their simplest parts, namely polylines are
decomposed into vectors and polygon strip and mesh primitives are decomposed into triangles. Determining whether a
given point lies within a triangle or a thick line, and determining the distance of the given point to a line or triangle edge,
consist of evaluating a set of linear expressions that mathematically represent the edges of the primitive. Determining
the values of the interpolated variables similarly reduces to evaluating some linear interpolation equations. In Denali, the
scan conversion is produced by the Linear Evaluator Array (LEA) ASICs on the Transform Engine Modules, described
in Section 4.2.

The result of the scan conversion of each primitive is a stream of pixel packets, representing the pixels inside (or
sometimes close to) the primitive. The packet for every pixel contains its pixel address and its color based on the object
color attribute and the application of lighting and shading. Depending on the details of the rendering method in use, a
pixel packet might also contain a 24-bit depth value, an 8- or 16-bit alpha value, an eight-bit stencil mask, an eight-bit
distance, and two or three texture coordinates, each of 24-bits. All these per-pixel data may be used later in the rendering
pipeline for depth buffering, for transparency or other compositing operation, for stenciling, for texture mapping, or
for anti-aliasing of vectors and polygon outlines. The Pixel Engine ASICs, which reside on the Frame Buffer Modules,

perform all of these downstream per-pixel operations. Section 4.4.3 describes the Pixel Engines in greater detail.

3.4 Depth Buffer and Stencil

Depth buffering (also called Z-buffering) is the method most commonly used in workstation graphics to account for the
effects of occlusion, which occurs in 3D graphics because opaque objects can obscure other objects (or parts of objects)
from view. Depth buffering is also the most common instance of the requirement for downstream per-pixel processing,
between the scan conversion stage and writing a pixel to the frame buffer. For depth buffering, the per-pixel processing
consists of comparing depth values to control whether or not a pixel is written to the output buffer.

The depth buffer consists of some off-screen frame buffer memory, 24 bits/pixel in Denali. Before a rendering traversal
begins, the depth buffer is initialized to a smallest possible value (which corresponds to the deepest positions in the 3D
scene, i.e. the locations most distant from the viewer). Then, during traversal, as each pixel packet arrives from the scan
conversion stage, its depth value is compared with the value in the depth buffer at the same pixel position, which is
either the initial depth value or the depth value of a pixel in that location from some primitive encountered previously
in the traversal. If the comparison shows that the new pixel comes from a point in the model scene that is nearer the
viewer than the previous pixel, then the new pixel color value and its depth value are written to the output buffer and
depth buffer respectively; otherwise the new pixel is discarded. Thus, we can be sure at the end of the traversal that
each pixel will be colored according to the primitive that covers it and is nearest the viewer.

In Denali, depth buffer memory is allocated from DRAM memory on the Frame Buffer Modules. The per-pixel depth
comparison is performed by the Pixel Engine ASIC on the FBM, discussed in Section 4.4.3. In addition, the PE includes a
depth query feature that supports hierarchical application of depth testing, discussed further in Section 4.4.7.

Stenciling is another way of applying conditions to control whether pixels are written to the output buffer. The
conditions that control the writing of pixels can be quite general, based on a defined eight-bits-per-pixel stencil mask in
the off-screen frame buffer memory and an eight-bit stencil field contained in the pixel packet of every 3D pixel from

the TEMs. The condition for writing a pixel can be based on a variety of logical and arithmetical combinations of the
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rendered pixel stencil value and the value for the same pixel location in the stencil buffer. In its simplest use, the stencil

can provide a spatial mask of arbitrary shape, specified independently of the object database.

3.5 Transparency

The transparent surfaces simulated in graphics do reflect some light, so they can be seen. However, transparent surfaces
do not completely occlude the objects behind them. The transparency effect is simulated by computing the displayed
pixel value as a blend of the color of the transparent surface and the color of the opaque surface behind it. Transparent
surfaces are illuminated and scan-converted like any other surface to determine their pixel colors under the standard
lighting model and texture application. However, each pixel coming from a transparent primitive will also contain a
non-zero transparency coefficient in the pixel packet’s alpha field. This alpha coefficient is used in blending the color
value of the present pixel with color values contributed to the same pixel location by the primitives that lie behind the
current primitive.

Denali supports three modes of rendering transparent surfaces. If the triangles can be sorted into a strict back-to-front
ordering, then the scene with transparent surfaces can be rendered on a single pass, a single traversal of the object
database. In the two-pass mode, the objects are also sorted back to front as well if possible, but the opaque objects are
all drawn in a first pass and the transparent objects on the second pass. In the multi-pass method, the opaque geometry
is drawn in the first pass, then transparent geometry is drawn on multiple passes, until the ordering of the geometry at
each point is known. Of course, the per-pixel blending operations are all performed by the PEs on the FBMs. Multi-pass

transparency requires the use of an accumulation buffer (See Section 4.4.2).

3.6 Primitive Anti-Aliasing

In raster graphics, aliasing occurs because of the finite pixel size, which limits the spatial frequency at which an image
can be sampled. The visible manifestation of this sort of aliasing are "jaggies", the familiar staircase appearance of lines
and polygon boundaries, which is evident even on raster displays of the highest resolution. Jaggies constitute a major
limitation of raster image quality, and moreover, can be extremely distracting and annoying to the operator in some
interactive applications.

Anti-aliasing, the cure for the jaggies, is a kind of filtering. It smoothes, softens, and blurs the appearances of the
pixels on or near the aliased edge, to make the jagged stair steps less noticeable. In Denali, anti-aliasing of lines and
polygon outlines makes use of the distance from a pixel sample point to the mathematical line or edge. It uses this pixel
sample distance as an index into a table of filter coefficients that are less than or equal to one and are used to multiply
the interpolated pixel color before writing it to the output buffer or blending it with the current contents. The Linear
Evaluator Array on the TEM computes the pixel sample distance in the scan conversion process. The Pixel Engine on
the FBM performs the filter coefficient lookup and then scales the pixel’s intensity by the filter coefficient. This kind of
anti-aliasing works better on lines that have some thickness. The Denali hardware supports line widths of one, two,
and four pixels; the anti-aliasing filter can be up to eight pixels wide.

More generally, the problem of aliasing goes beyond jaggies on rendered lines. It is a general phenomenon of discrete
sampling methods. Aliasing generally refers to artifacts that can arise in a sampled signal whenever the original
signal has significant high-frequency periodic components, specifically, with frequencies higher than half the sampling
frequency. These artifacts can appear as visually prominent lower-frequency periodic effects that are not at all present
in the original signal or image. In particular, the textures commonly used for texture mapping in graphics e.g. wood
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grain) frequently contain repetitive fine detail, and so are especially susceptible to such aliasing artifacts. The next

section describes further anti-aliasing methods for textures that are supported by the Denali hardware.

3.7 Texture Mapping

Texture mapping is a method of adding fine-scale variations to surface color to simulate more realistic-appearing
surfaces. It would be computationally intractable to produce such fine detail using the same geometric modeling methods
as used for the gross surface shape. An application supplies textures as pixmaps, which may come from scanning real
images or from procedural generation. Denali also supports 3D textures, which may be considered as stacks of 2D
textures, or time varying 2D textures.

To map a texture to an area primitive, an application has to supply texture coordinates with each vertex of the
primitive - a pair of texture coordinates for ordinary 2D textures and three texture coordinates for 3D textures. Texture
coordinates are (possibly fractional) indices that select the row and column of the texture pixmap from which to fetch a
color to apply to the point on the surface. The texture color for the point might replace the color defined by the other
attributes and the lighting model, or it might modify that color as a multiplicative factor, or it might be blended with
that color in some other way.

In the scan conversion stage of the pipeline, texture coordinates at vertices must be interpolated to give texture
coordinates for each pixel. When the view is perspective (the usual case in realistic rendering), the interpolation of the
texture coordinates must be nonlinear, specifically rational, to obtain good results. That is, the perspective projection
must be computed for each pixel; it does not suffice to compute the perspective projection only at the vertices and
then linearly interpolate projected coordinates. Effectively, this requires dividing two or three linearly interpolated
texture coordinates by a linearly interpolated common denominator at each pixel. On Denali, the LEAs perform the
linear interpolations, and the PEs perform the division.

In general, as textures are mapped to the model surface by the texture mapping, and thence to the display screen
through viewing transformations, the pixels of the texture are not put into one-to-one correspondence with the pixels
on the screen (for this reason, the elements of the texture are called texels, to avoid confounding them with the screen
pixels). The rows and columns of the texture do not generally map to lines parallel with the rows and columns of the
display raster. The texture map can stretch the texture, so that a typical texel spreads out over several screen pixels; or,
the texture map can compress the texture, so that several texels map into a single screen pixel. Even the simplest planar
texture map compresses the texture non-linearly when projected in perspective. Generally, in a single texture map,
the texture may be stretched in one direction and compressed in another direction, and the nature of the stretching
and compressing can vary from point to point. Perspective projection induces a non-linear compression of the texture,
which necessitates the rational interpolation of texture coordinates discussed above.

Therefore, displaying a texture-mapped surface requires resampling the given texture. Resampling a digital image
always provides an opportunity for unwanted aliasing artifacts, especially when the image contains repetitive fine
detail, as many interesting textures do. These artifacts can be especially distracting in animation, because textures can
appear to crawl on moving surfaces in unnatural ways. Therefore, in order to achieve high quality texturing in rendered
images, the graphics system must apply some sort of blending or filtering in the resampling of the texture pixmap.
Conceptually, the filtering involves replacing each texel value by a weighted average of itself and a set of its neighbors
(this kind of moving weighted average is called convolution in mathematics and image processing. See Section 5). The
size and shape of the averaging neighborhood and the exact weighting function constitute the filter kernel. Different

cost/quality tradeoffs result from different filter kernels. A fundamental problem of texture map filtering is that the
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appropriate filter kernel depends on the degree of compression of the texture when it is mapped to screen space, and, in
general, this compression varies across the texture.
Denali offers several methods of texture sampling and filtering, which give a cost/quality tradeoff, and which are

appropriate for a range of texture mapping applications:

o Point sampling: for each screen pixel the sample is the value of the texel closest to the point in the texture plane
given by the pixel’s texture coordinates. Point sampling is the cheapest to compute, but is most subject to aliasing
artifacts that limit image quality.

e Bi-linear interpolation: the texture sample color is a blend of the four texels around the sample point in the
texture plane (the point defined by the texture coordinates); each texel’s contribution to the blend is weighted
inversely to its distance from the sample point, using a bi-linear function of the texture coordinate differences
(tri-linear interpolation from the eight nearest volume texels is used in the case of 3D textures). This method is
appropriate when the texture is stretched, so that a single texel covers a number of screen pixels.

e Mipmapping: is a combined filtering and resampling method that is especially applicable when the texture is
compressed, so that each screen pixel is influenced by a number of texels. A mipmap is a compact structure for
storing a texture pre-filtered at multiple resolution levels: an original texture and pre-filtered versions of 1/2, 1/4,
1/8, ... of the original resolution. Then, in evaluating the texture for each pixel, an appropriate resolution level is
selected according to an estimate of the degree of texture compression at that pixel. Because of the power-of-two
ratio for each resolution step, the texture coordinates for the resolution level can be economically obtained by
shifting of the binary texture coordinates provided by the pixel packets. In the simplest version of mipmapping,
the pre-filtered sub-resolution texture is point sampled. Denali also supports refinements to mipmapping that
use bi-linear interpolation within the mipmap at each resolution level, as well as linear interpolation between the
two mipmap resolution levels that bracket the exact compression ratio. A limitation of the mipmapping method
is that it is isotropic; it assumes that the texture compression ratio is the same in both the principal directions of

the texture raster. In fact, anisotropic texture compression is frequently the case.

On Denali, textures can be of many visual types: 32-bit RGBA, 64-bit RGBA., both with several different byte orderings.
The fastest texture mapping obtains when the textures are stored locally in the FBMs, with a copy of the texture in each
FBM. Local 2D textures can have size up to 512x512 and 3D textures up to 64x64x64. In practice, these are usually not
serious limitations because the texture mapping objective is frequently well served by using the stored texture as a tile
to be repeated periodically to fill a larger texture space. The PE’s can evaluate texture coordinates modulo the tile size,
to effect texture tiling automatically.

Larger textures can be stored non-locally, in host memory. Of course, application of non-local textures will be much
slower because texture coordinates have to be read back to the host to fetch the texel values. Non-local textures can

have size up to 4096x4096. This limitation is due to the precision of the LEA interpolators.

3.8 Environment Mapping

Environment mapping is a method of using the mechanics of texture mapping to simulate specular reflection effects on
a rendered surface. It is not geometrically accurate, but it is an inexpensive way to produce a variety of shiny-surface
effects.

The application begins by generating a texture that represents the projection of the environment on a cube surrounding
the object. In the Denali hardware, the geometry processing in the TEs assigns to each vertex a reflection vector that
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depends on the viewing direction and the surface orientation at the vertex. Then the LEA’s interpolate the reflection
vector components to each pixel. The pixel processing stage in the PEs then uses the interpolated reflection vector

components as indices into the environment texture.

3.9 Shadows

Denali can render shadows in two or more passes - a first pass that ignores shadowing, and an additional pass for each
light source, to account for the effects of shadowing of that light source. On each light source pass, the Transform
Engine performs the geometry calculation to determine a set of shadow quads for each light source. A shadow quad is a
quadrilateral in 3D space, determined by the light source, a silhouette edge of the object, and a distant plane. Projecting
the shadow quads to the image plane and rasterizing the projected shadow quads gives a pixel map that is used to

modulate the intensity of the first-pass image, to simulate the effects of shadowing.

3.10 Full Screen Anti-Aliasing

The highest quality anti-aliased images can be obtained by repeatedly rendering a scene, varying the sub-pixel offsets
for the pixel sample points, and compositing the contributions of the several passes, using weighting coefficients derived
from an appropriate filter kernel. Denali hardware supports such sub-pixel sampling to an 11x11 sub-pixel resolution.
These methods generally require Denali’s double-precision accumulation buffer to maintain precision through repeated

multiply-accumulate operations (See Section 4.4.2).

3.11 Double Buffering

Double buffering is a means of displaying only completely rendered images, avoiding displaying images while ren-
dering is in progress. It is needed for good animation effects. Animation consists of displaying a sequence of images
(called.frames) in rapid succession, while some of the objects in the scene move or otherwise change from frame to
frame. If the time required to render a frame is noticeable (frequently the case in practice), then animation without
double buffering is unsatisfactory.

Double buffering makes use of two display buffers, which alternate roles as refresh buffer and render buffer. The
refresh buffer supplies the data used in the video raster scan to refresh the screen image. While the rendering system is
rendering a frame, it writes the output pixels to the render buffer, while the Video Output Section displays the image of
the previous frame from the refresh buffer. When the image in the render buffer is completely rendered, then, through
switching, the buffers swap roles. The render buffer becomes the new refresh buffer in order to display the newly
rendered frame, and the refresh buffer becomes the new render buffer to receive the rendering of the next frame. In this
way, the viewer is presented only with completed frames, and never sees frames in the process of rendering.

Of course, before the rendering of the new frame begins, the new render buffer must be cleared of the previous
image; that is, all of its pixels must be set to a background color, at least logically. It can take a significant amount of
time to clear the buffer by actually writing the background color to all the pixels. Denali’s Zero Time Clear™ feature
(ZTC), discussed below in Section 4.4.6, eliminates this time cost.

When a graphics display is used in a multi-tasking window environment, the enabling of double buffering, as well as
the timing of the buffer role swapping, will naturally be window specific. Thus, the switching that selects the refresh
buffer from the two physical buffers must occur on a per-pixel basis during the refresh cycle. In Denali, this window
specific buffer switching is performed by the Data Path ASICs on the Frame Buffer Modules, discussed below in Section

4.4.4.
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Even when the rendering time is very short, there is no benefit in swapping the buffer roles before the completion of
the screen refresh cycle in which the new frame completes rendering. In Denali, the swapping of buffer roles for all
double-buffered windows occurs only at vertical retrace time. This synchronization has implications for ZTC, as we
shall see below.

3.12 Overlays

An overlay is an image intended to be superimposed on a primary image in the display, usually covering only a fraction
of the pixel locations. At most of the pixel positions the overlay is "clear" and the pixel has the color of the primary
image; only the covered pixels have the overlay color. Overlays usually have relatively few bit planes and are typically
used for grids, annotations, pop-up menus, and other graphical effects that are auxiliary to the primary image.
Hardware overlays are stored in a set of bit planes distinct from the primary refresh buffer and are implemented by
per-pixel switching. That is, where the overlay color is "clear" the pixel data from the refresh buffer is used, otherwise
the overlay color is used. Thus, overlays can be turned on or off and moved about the screen non-destructively, without
disturbing the data in the primary image buffers. In Denali, the switching between primary image and overlay color
occurs in the RAMDACs™ in the Video Output Section. But since overlays are also window specific and can also be
double-buffered, the Data Path chip on the FBMs is also involved in overlay control. Sections 4.4 and 4.5 give more

details on the overlay function.

3.13 Stereo

Denali provides a stereo display by partitioning the display buffer scan lines into two sets, one for each eye, and
displaying the two partitions alternately, each at 72 Hz. The stereo effect is realized by viewing the screen through
glasses whose lenses are liquid crystal shutters that open alternately in synchronization with the refresh cycle. An
infrared source mounted atop the monitor provides the synchronization signal detected by the glasses.

There are two stereo modes: one has 1280x512 resolution, and therefore non-square pixels, and the other has 640x512

resolution and square pixels. Both stereo modes can be double-buffered.

4 MAIN SUBSYSTEMS
4.1 10Ps

The Denali IOP ASIC is the central interface between the host computer and the Transform Engine Modules. It defines
a Denali-specific DMA interface, consisting of a bi-directional parallel bus, and a unidirectional serial bus through
which Denali status information can be passed back to the host. The IOP connects to a host-specific IOP via a 50-wire
cable. The host-specific IOP is a board that plugs into and provides the interface to the high-bandwidth I/0 channel of
the host. Initially, host-specific IOPs exist for Alpha/TURBO channel hosts.

On its other side, the Denali IOP communicates with one to six Transform Engine Modules. Data passes between the
IOP and the TEMs via two 32-bit buses, one shared by TEMs 0,2,4, the other shared by TEMs 1,3,5. The IOP supports
separate control signal lines to each of the six TEM slots. This radial control topology simplifies the bus protocol and
reduces the overhead of IOP-TEM transactions. Thus, the IOP can transfer unique information simultaneously to two
TEMs, and can broadcast simultaneously to all six.

As described above in Section 3.1, in graphics rendering, software running on the host traverses the object database
and produces a stream of graphics commands, including primitives, attributes, and other commands to be interpreted
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by the Denali system. Denali commands are packaged in packets of one or more 32-bit words. They are passed from the
host, through the host IOP to the Denali IOP. Some of the graphics commands, such as output primitives, are processed
by any one TEM, so that potentially several TEMs are working simultaneously in parallel on different primitives. Some
of the graphics commands that set rendering state, such as primitive attributes, are to be broadcast to all the TEMs.

Each TEM contains an input FIFO of programmable size, as described in the next section. The IOP-to-TEM buses
include signal lines by which each TEM can signal whether its FIFO contains enough free space to receive a command.
The IOP sends the commands that are intended for any one TEM on a round-robin basis to TEMs whose FIFOs have
sufficient space. The maximum possible data transfer rate, host to TEMs via the IOP is 100MB/sec.

4.2 Transform Engine Modules

f Large Register Set
I
G aphlcs Processor Integer and Floating Point Instruction
Branch Target Cache
(AMD 29050) ¢
Transformation, Lighting, Clipping
Deferred Shading
Raster Manipulation
T 7
| | + A * D
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Graphics 10 A Evaluator
Vertex | Engine Primitive Array Networt
Controller ‘ >
(DSE) (LEA)
A y Point, Line, Tri Primitive Rasterization
| A |D Edge equation (4) Concurrent Evaluation (10)
y / Interpolant Plane Equations (6) Fragment/Pixel Formatting
| b Primitive Clipping to Viewport ~ Address Translation
Cache | Cache | Gommand FIFO Transformation &
(5MB) | (sMB) | S Rasterization
i i Module (TRM)

Fig. 2. Transformation and Ratserization Module Block Diagram

Figure 2 depicts a block diagram of the Transformation and Ratserization Module. The heart of each TEM is
the Transform Engine (TE), a programmable microprocessor whose functions include interpretation of the graphics
commands passed from the host, geometry transformations, clipping, lighting computations, and other per-primitive
or per vertex operations. Generally, the TE performs all the floating point processing that occurs in the Denali. The
TE breaks larger primitives (e.g. triangle strips) into smaller primitives (e.g. triangles) that can be consumed by the
specialized scan conversion circuits on board, which are described below.

The TE also executes a sphere rendering algorithm that includes both geometry processing and scan conversion.
The algorithm implements both diffuse and specular reflection, computes depth values for each pixel, and correctly

accounts for the effects of perspective foreshortening.
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TEO has a special role in controlling the Data Path ASICs on the FBMs, the Pixel MUX ASIC in the Video Output
Section, and the RAMDACS. All these elements, plus the IOP, share an auxiliary bus, called the RAMDAC bus, by which
TEO can set the control registers and load the internal tables of these elements. The TEs can program the Pixel Engines
on the FBMs by sending Non-Pixel Data pixel packets.

The Denali Transform Engine is implemented by a general purpose, high-performance 32-bit microprocessor, the
Am29050™. This processor features a high degree of on-board pipelining and parallelism. The integer unit, address bus,
and floating point unit are all fully pipelined. The integer unit and floating point unit operate in parallel, and the floating
point unit provides simultaneous addition and multiplication. The Am29050 has 192 general registers and a 1KB Branch
Target Cache™, which ensure that instructions and operands are almost always available when needed. It has separate
data and instruction buses, which support burst-mode memory access, so it can achieve transfer rates to memory
up to 160MB/sec. Peak integer performance is 32MIPS and peak floating-point performance for multiply-accumulate
operations is 80MFLOPS. On Denali, the Am29050 is used exclusively in a physical addressing mode. A Denali can have
up to six Transform Engines, one on each Transform Engine Module.

The Transform Engine Modules each contain one MB of fast SRAM, half a megabyte each for instructions and data.
The input FIFO that receives graphics commands from the host resides in Data SRAM. The code that the TE executes is
all in Instruction SRAM, downloaded at system initialization time.

The TE and its supporting SRAM are augmented by three custom ASICs on the TEM board: the Transform Engine
Controller ASIC (TEC), the Linear Evaluator Array ASIC (LEA), and the Draw Setup ASIC (SETUP).

The Linear Evaluator Array (LEA) is the scan conversion engine. The LEA samples each given primitive to determine
which screen pixels the primitive affects and to determine the pixel values that the primitive contributes to each affected
pixel location. LEA primitives are points, triangles (filled), and lines (with width). Polygon outlines can be rendered like
lines. The pixel values computed by the LEA include color and, potentially, depth, alpha coefficient, texture coordinates,
and the distance functions used in anti-aliasing. Thus, the LEA is a linear equation engine and a linear interpolation
engine. Each LEA can evaluate up to ten geometry and attribute linear functions in parallel. There are five geometry
evaluators: four edge evaluators for resolving in/out pixels and one depth interpolator. Five attribute evaluators can
interpolate color, alpha, and texture coordinates. To support texture mapping, the color contributions of diffuse and
specular reflection may be interpolated separately.

The LEA begins at a vertex of a given primitive (triangle or vector) and executes a scan algorithm that evaluates
each pixel with respect to the edges of the primitive and computes its interpolated pixel values. The result of the edge
evaluation on each pixel determines the next pixel to be tested in the scanning process, which will usually be one of the
pixels adjacent to the current pixel on the same scan line or an adjacent scan line. The scanning algorithm is efficient in
that it touches the minimum number of pixels necessary to render the primitive, at least for primitives that do not cross
clipping boundaries. The output of the LEAs are pixel packets to be sent to the Frame Buffer Modules via the Router.

Registers on the LEA hold the coefficients of the linear equations that represent the edges that define the primitive.
These coefficients have to be computed for each primitive from the list of transformed vertex coordinates. The Draw
Setup ASIC’s function is to compute the linear coefficients from the defining vertices and write them to the LEA registers
to set up the LEA for each primitive. It contains a 32-bit multiplier and arithmetic-logic unit.

The Draw Setup chip and the LEA use fixed-point arithmetic. Vertex coordinates are carried to 16-bit precision, with
four bits of sub-pixel resolution. Depth value is carried to 24 bit precision. Texture coordinates have 24 bits with 11 bits
of sub-texel resolution. Color and transparency values may have eight or 16 bits per channel. The double-precision

pixel values are needed for the multi-pass rendering methods.
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The LEA and Draw Setup chip contribute substantial processing power to the TEM functionality, fully comparable
with the computing power of the TE itself.

The Transform Engine Controller (TEC) controls the several data paths connecting the memory and computational
elements of the TEM. The TEC also manages communication between its TEM and the IOP. Graphics commands coming
from the host via the IOP are received by the TEC and stored in an input FIFO in the TEM’s data SRAM. The TEC
contains registers that hold the pointers that define the FIFO’s state. The FIFO length is programmable.

4.3 Router

The Router is a wide cross-bar switch that sends pixel packets from the TEMs to the correct FBMs. Each pixel packet
coming from a TEM consists of one to five 48-bits words. Each TEM has its own 48-bit bi-directional bus to the Router,
plus a five-bit unidirectional bus that signals the destination FBM. There are ten parallel 24-bit bi-directional buses
connecting the Router with the FBMs. So the Router can communicate simultaneously with six TEMs and ten FBMs. In
a 20-FBM system, each FBM bus is shared by two FBMs. The Router can also duplicate data from a TEM and broadcast
it to all the FBMs.

The Router has a bit-sliced architecture, implemented with six copies of a custom ASIC. Each Router chip has inputs
to receive eight bits from each of the six 48-bit TEM buses, four bits from the low order 24 and four bits from the high
order 24. Each Router chip has outputs for four bits of each of the ten 24-bit FBM buses. In every clock cycle, each chip
performs identical operations, so the Router is considered as a single unit. The 48-bit word received from the TEM is

split by the Router and sent as two 24-bit words to the destination FBM (the upper half followed by the lower half).

4.4 Frame Buffer Modules

As its name implies, the Frame Buffer Modules (FBM) contain frame buffer memory, which includes the memory
that holds the image that is used to refresh the display, as well as considerable off-screen frame memory to support
the functions described in Section 3. Each FBM contains multiple buffers for a fixed interleaved subset of the screen
pixel locations. A Denali system can contain five, ten or twenty FBMs, and so each contains one-fifth, one-tenth, or
one-twentieth of the total frame buffer memory.

Besides the frame buffer memory, each FBM contains two important custom ASICs:

o The Pixel Engine ASIC (PE), which receives the pixel packets from the TEMs via the Router, performs all the
per-pixel computations, and finally writes pixels to the frame buffers, and

e The Data Path ASIC (DP), which provides the interface between the FBM and the Video Output Section, serially
reads out pixel data from the display buffer synchronously with the screen refresh cycle, and performs the

switching needed for window-specific double buffering, Zero Time Clear, and hardware cursor functions.

Sections 4.4.1 and 4.4.2 give more detail on the organization of the FBM buffers; Section 4.4.3 gives more detail on
the Pixel Engines, and Section 4.4.4 describes the operation of the Data Path ASIC.

4.4.1 FBM Interleave. In terms of pixel locations, each FBM contains the buffer memory for an interleaved portion
of the screen. The benefit of the interleaved frame buffer memory organization is increased opportunity for parallel
computing. The pixel packets that arrive from the TEMs in close time proximity are likely to have come from the same
small primitive, and so are likely to be clustered in a small area of the screen. The interleaved memory organization
allows simultaneous access to spatially proximate pixels. The several FBMs work in parallel, each on pixel locations in
its own interleave.
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The interleaving in the x-direction is five-fold. In the y-direction the interleave depends on the configuration -
one-fold, two-fold, or four-fold, for the five-, ten-, and twenty-FBM configurations, respectively. Specifically, in a
five-FBM system, FBM 0 includes pixels 0 to 3, 20 to 23, 30 to 33, etc., of every scan line; FBM1 includes pixels 4 to 7, 24
to 27, etc., of every scan line. And so on for FBM2 to FBM4. In a ten-FBM configuration, each FBM contains pixels only
on every other scan line. The even numbered FBMs cover the even scan lines and the odd FBMs cover the odd scan
lines. In a twenty-FBM configuration, each FBM contains pixels only on every fourth scan line.

The reason that the interleaves each contain runs of four consecutive pixels on a scan line is to take advantage of
the page-mode access to the RAMS, in which several consecutive locations can be accessed on successive clock cycles,

without having to repeat a column address cycle for each access.
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Fig. 3. Footprint Module Block Diagram

4.4.2 FBM Memory Buffers. Figure 3 shows a block diagram of the FM. The complete frame buffer memory is divided
into three parts: Display Buffer, Control Buffer, and Draw Buffer. Display Buffer includes both the refresh buffers that
hold the image data used to refresh the display and the render buffers to which images are rendered in double buffering
(See Section 3.11). A Denali system contains at least two complete 1280x1024x24 bit RGB frame buffers, designated
Display Buffer A and Display Buffer B. For double buffering, these two buffers provide the refresh buffer and render
buffer, in a window-specific way. That is, on any given screen refresh cycle, some pixels are refreshed from Display
Buffer A and some pixels are refreshed from Display Buffer B, depending on the active windows in which they lie. The

switching is performed by the Data Path ASIC, described in Section 4.4.4. The Display Buffer is implemented in video
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RAM (VRAM), a sort of dual-ported memory that provides random access for drawing a picture and simultaneous serial
read-out for refreshing the display.

The Control Buffer has 1280x1024x16 bits. Six bit-planes constitute a pixel-specific Window ID. Thus, up to 64
simultaneous windows can be accommodated by the hardware window switching scheme. Five of the Control Buffer bits
are for overlay control and five are for ZTC control, as discussed further below. The Control Buffer is also implemented
in VRAM, and, in order to support the ZTC feature, part of the Control Buffer is implemented in a special three-port
VRAM which provides a serial write access simultaneously with the serial read out.

Finally, the frame buffer memory includes a large Draw Buffer, comprising either two or four full 1280x1024x32-bit
buffers. These planes can be used as 24-bit depth buffer, eight-bit stencil buffer, 32-bit RGBA pixmaps, or 64-bit RGBA
accumulation buffers, and for storage of textures and filter coefficient tables. The double-precision accumulation buffer
is needed in multi-pass rendering methods in which each pixel’s color is determined by combining the effects of a
number of different sampling operations.

Each FBM contains the memory for the parts of the Display, Control and Draw Buffers in the FBM’s own interleave.
In a five-FBM system, each FBM must contain 1.5MB of Display Buffer memory, in order to provide a full double-display
buffer, and 0.5MB of Control Buffer memory. In the ten-FBM and 20-FBM configurations, each FBM contains 0.75MB
of Display Buffer memory and 0.25MB of Control Buffer Memory. In a twenty FBM system, there are four full 24-bit
Display Buffers. The extra Display Buffer memory can be used together with the corresponding Control Buffer memory,
as an extension to the Draw Buffers.

Each FBM can have 2MB or 4MB of Draw Buffer memory, which is implemented in DRAM.

4.4.3 Pixel Engine. There is one Pixel Engine ASIC (PE) per Frame Buffer Module. The PEs act as controllers for the
frame buffer memory, each responsible for the interleave on its FBM. They receive the pixel packets from the TEMs via
the Router. Each PE contains an on-board FIFO sufficient for holding up to 20 pixel packets, and each is connected
to the Router via a 24-bit bi-directional data bus (that it may share with one or three other PEs, depending on the
configuration) and two handshake lines.

The messages from the TEMs to the PEs consist of packets of one to five 48-bit words. Some one-word message types
are Non-Pixel Data, used to program the PEs by setting their control registers. The remaining types of packets are Pixel
Data. See Section 3.3 for a discussion of the different sorts of information that pixel packets can contain.

A PE contains four 16-bit multiply-accumulators, four 32-bit logic units, internal lookup tables, and pointers for
accessing external lookup tables. The lookup tables typically contain coefficients to use in scaling and mapping of pixel
values, such as filter coefficients to be used in anti-aliasing.

PEs can remap the incoming pixel color values according to lookup tables in FBM memory (however, this is not the
normal means of providing pseudo color mapping on Denali; normal color maps are contained in the RAMDAC, as
discussed below in Section 4.5). Then, the PE can modify an arriving pixel value according to other data contained
in the pixel packet. For example, in the case of anti-aliased lines and polygon outlines, the pixel packets contain a
parameter measuring the distance of the pixel from the line; this distance parameter is used as index into a table of
filter coefficients, which are used as multipliers of the pixel color values. Further, the PEs can read pixel RGB data from
the Display Buffer or RGBA data from the Draw Buffer, to be combined with the arriving pixel data in various ways,
supporting transparency, anti-aliasing, and several kinds of multi-pass rendering methods, as described in Section 3. In

texture mapping, tJte PEs perform the perspective division of texture coordinates, mentioned in Section 3. 7, before
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using the texture coordinates to look up the texture value. Finally, the PEs perform write masking based on depth
comparison and stencil comparison, reading from the depth buffer or stencil buffer in the process.

The PEs also occasionally write to the Control Buffer. They write the overlay data, and can apply the full range of
blend operations, depth comparison, stencil comparison, and Window ID comparison conditions to the overlay write.
Further, each time a PE writes to a rendered pixel, it sets the appropriate ZTC bit to flag the pixel as a foreground pixel.
(See Section 4.4.6).

Generally the PE accesses frame buffer memory randomly in response to arriving pixel packets. Its high-bandwidth
connection to the memory buffers is a significant factor in its performance. The PE can access the Display Buffer, the
Control Buffer, and the Draw Buffer simultaneously, transferring up to 72 bits of pixel data per memory cycle. For
page-mode access, the peak transfer rate between one PE and the frame buffer memory is 60MB/sec. Thus the peak

transfer rate of all PEs to memory can be as large as 1200MB/sec in a 20-FBM system.

4.4.4 Data Path ASIC. The Data Path ASIC (DP) on each FBM provides the interface between the Display Buffer
memory and the Video Output Section. It performs the essential switching that implements window-specific double
buffering, the hardware cursor, and Denali’s Zero Time Clear feature (ZTC), described below. The DPs receive the pixel
clock signal from the Pixel MUX chip set on the motherboard, and each DP generates an appropriately phased clock for
the serial read out from its own frame buffer. On each pixel clock tick, each DP passes to the Video Output Section all
the information needed to draw one pixel on the screen.

Each DP has separate 24-bit input ports for Display Buffers A and B, and a 16-bit port for the Control Buffer. The
DP reads out simultaneously the color values from both Display Buffers and the control information from the Control
Buffer, serially in phase with the video refresh scan cycle. For each pixel in the scan, the DP passes a single 24-bit color
value and three bits for color map selection on to the Video Output Section. The transmitted color value may come
from either of the two Display Buffers, or may come from internal tables in the case that the pixel lies under the cursor
or the case that it is a background pixel when ZTC is in effect.

Each DP contains a Window Attribute Memory (WAM), containing 32 bits of attribute information for each of the 64
possible windows. One of these window attribute bits tells whether Display Buffer A or B is the refresh buffer for the
corresponding window. This information, together with the Window ID in the control buffer, tells the DP which of the
two Display Buffers is the proper source for the present pixel on the present refresh cycle. Of the remaining WAM bits,
one controls overlay double buffering, three select the RAMDAC color table, 24 contain the window background color
for use by the ZTC feature, and three control the window specific ZTC function, as described below in 4.4.6.

The DP also passes further control information through to the Video Output Section. For example, the RAMDAC
provides five independent color lookup tables for pseudo color maps. Each window entry in the WAM contains three
bits that select the color table in the RAMDAC; the DP passes the color table selection bits to the RAMDAC in a
window-specific way. The DP also passes the overlay select data to the RAMDACS. The five overlay bits can be used as
a single-buffered five-plane overlay or a double-buffered two-plane overlay, in a window-specific way.

The DP chips are all on the RAMDAC control bus. By this path, TEO can set the Window Access Memory, cursor

control memory, and other internal registers.

4.4.5 Cursor. Each DP contains a pair of registers that hold the screen position of the cursor, and a 32x32x2-bit cursor
shape pixmap. Therefore, the DP is able to detect when a pixel lies under the cursor position, and in this case the DP
sends on to the Video Output Section a cursor color, selected from three-color internal color map. instead of a color
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from the Display Buffers. The cursor position stored in all the DPs is updated by the host software on each video retrace

cycle, according to the movement of the pointer input device. All the DPs contain the same cursor information.

4.4.6 Zero Time Clear. In double-buffered rendering, before beginning the rendering of each frame, the render buffer
must be cleared; that is, all of the pixels must be assigned the background color. When depth buffering is in effect,
then the depth buffer must also be initialized before rendering by giving all pixels the minimum depth value. The time
required to initialize these buffers directly by writing the background values to each pixel can be significant in relation
to the frame rendering time, especially if the window is large. Denali’s Zero Time Clear feature (ZIC) eliminates the
time that would be needed to initialize the render buffer and the depth buffer. Under ZTC, background color and depth
values are never actually written to the render buffer and depth buffer. Rather, flags in the Control Buffer distinguish
background pixels from foreground pixels. These Control Buffer flags are initialized for each rendered frame with zero
time cost, during a single screen refresh cycle. Because of parallel access to the three buffers, the PE can set the flag
values for the foreground pixels during frame rendering and the DP can test them during screen refresh, both with zero
time cost.

Five bits in the Control Buffer are used for the ZTC flags. Entries in the Window Attribute Memory within the DP
ASICs provide for using ZTC on a window-specific basis. For each window, this entry specifies whether ZTC is enabled,
which Control Buffer bits control the ZTC function for each rendered frame, and the color to be used for the background

pixels.

4.4.7 Depth Query. In Denali’s depth-query mode, a surface is passed through the rendering pipeline without writing
the pixel values to the Display Buffer or depth values to the depth buffer. Rather, the PE sets a flag in a register if any
rendered pixel would be visible through the depth values already present in the buffer. The purpose of this feature is
the ability to pre-test a complex surface for potential visibility before rendering it, by choosing a simple test surface

placed in front of the complex surface and rendering the simple surface in the depth-query mode.

4.5 Video Output

The Video Output Section, on the Denali motherboard, consists of a Pixel MUX chip set, three Bt462 single-channel
RAMDACS (one each for the R, G, and B channels), and a Bt438 clock chip.

The clock chip is the original source of the video timing signals. It is in a phase-locked loop with the three RAMDACS,
which keeps them synchronized with sub-pixel resolution. In addition, it provides the Pixel MUX chip with a video
clock signal from which the PM generates derived video timing signals for the Frame Buffer Modules, the RAMDACsS,
and for the auxiliary low-resolution video output board described below.

The Pixel MUX provides the interface between the Video Output Section and all of the Data Path ASICs on the Frame
Buffer Modules. There are five parallel buses running from the DP chips to the Pixel MUX, each shared by one, two, or
four DPs, according to the FBM configuration. On each 37-nsec tick of the pixel clock, each of the five buses presents to
the Pixel MUX all the data needed to draw one pixel: RGB color data, overlay select data, and color lookup table select
lines. However, because of the frame buffer interleaving, the five pixels presented simultaneously to the Pixel MUX are
not consecutive on a scan line. The Pixel MUX has the function of reordering the twenty pixels that arrive in four clock
ticks, to send them on to the RAMDAC::s five at a time in scan-consecutive order.

In addition, the Pixel MUX performs the switching needed to implement the several stereo modes, alternating right
eye fields and left eye fields.
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The Bt462 RAMDACS each accept one eight-bit color channel, plus the overlay select and color table select signals,
for five pixels in each 37-nsec clock. Each RAMDAC contains five 256x8-bit color tables for pseudo-color remapping,
and a 32x8 bit overlay color table. The RAMDACS each contain an eight-bit digital-to-analog converter, which together
provide the RGB signals to drive the display monitor. The monitor refresh cycle can be either 72 or 60 Hz, under software
control.

Kubota Graphics offers an optional auxiliary video board that provides output in both the NTSC and PAL broadcast
video formats. The auxiliary video board is a daughter board which plugs into a connector provided on the Denali
motherboard. It puts out video signals that capture an appropriately sized window of the high-resolution screen (640x480
for NTSC and 768x576 for PAL). At any time this board is either in NTSC mode or PAL mode, and for each of the
broadcast formats, it provides simultaneous outputs for three-wire RGB, two-wire S-video, and one-wire composite
video. The video timing can be genlocked to an external signal. Use of the auxiliary video board does not impact the

operation of the normal high-resolution display. A control port is available for interfacing with animation controllers.

5 IMAGING AND VOLUME RENDERING

This section describes basic image processing and volume rendering functions which can benefit from acceleration by

Denali hardware and firmware [1].

5.1 Image Processing

The graphics rendering processing described above in Sections 3 and 4 begins with geometric models to produce pictures
in the form of digital images (pixel data). Image processing, on the other hand, begins with digital images as its initial
data. Frequently, the objective of image processing is to produce new images, which will be in some sense preferable
to the initial images (image enhancement), but it sometimes also has the goal of extracting high-level information
from given images (image understanding or image classification). Historically, image processing and geometry-based
graphics have been distinct activities, performed by different people using different software and specialized hardware
for different purposes. But recently the distinction has become blurred as each discipline adopts techniques of the other.
Moreover, some application areas are finding ways to combine the two approaches in single applications.

For example, some of the techniques of the advanced rendering methods discussed above are properly classified
as image processing techniques - in particular, The anti-aliasing methods of resampling and filtering used in texture
mapping, and the techniques that make use of the pixel value transformation functions of the Pixel Engine. Indeed, the
basic image processing functions of image scaling, image rotation, and geometric transformation of images may all
be regarded as simple special cases of texture mapping. Therefore, the special features of the Denali architecture that
support these advanced rendering functions can be applied equally to support basic image processing functions.

The performance of every image processing operation depends on the speed of the most basic imaging operation,
namely copying images and subimages from one part of image memory to another, including both system memory and
the various frame buffers of the imaging system (put-image or block transfer). Because of the high bandwidth at every
stage of its pipeline, Denali provides very fast put-image and related functions. (measured performance data will be
reported in a future version of this overview or in a collateral document).

Another special feature of the Denali architecture that aids image processing applications is the capability for double
precision image computing (sixteen bits per color and alpha channel). Although eight bits usually suffice for the display
depth, many image generation systems use deeper pixels, and the chained computation performed on images in many

applications require higher precision to maintain accuracy of the result.
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Kubota Graphics has developed low-level software and firmware to apply the parallel processing of the Denali
pipeline to fast image scaling, rotation, geometric warping, and convolutions, which all operate on images from a source

in system memory to a destination in the FBMs.

5.2 Volume Rendering

Digital images consist of sets of sample data on uniform planar grids of sample points (pixels). The power of image
processing methods in medicine, geophysics, and industry derives from the fact that any set of sample data on a regular
planar grid may be interpreted and visualized as image data. Volume data generalizes this idea to three dimensions.
A volume data set consists of data elements, called voxels, associated with a regular (if not uniform) grid of sample
points in three dimensional space. Because the world is three dimensional, most of the application domains that use
conventional imaging methods also naturally produce volume data sets as stacks of 2D image sets.

Volume rendering refers to methods for producing ordinary 2D images from volume data sets to afford the user
insight into the content of the volume data. Volume rendering methods are extremely demanding because of the very
large size of volume data sets with usable spatial resolution. Volume rendering on Denali benefits from the large frame
buffer memory and the parallel processing available both on the Frame Buffer Modules and the Transform Engine
Modules. In these methods, the volume data set is partitioned into subvolurnes that can fit on a single FBM. All of these
methods involve some form of resampling the volume data, and thus are amenable to the existing machinery on the
FBMs for 3D texture mapping. Resampled values can be determined either by the nearest neighboring voxel to the
sample point or by tri-linear interpolation from the eight nearest voxels that box a sample point.

Kubota Graphics has developed low-level software and firmware to implement several volume rendering methods.
The simplest conceptually is multi-planar reformatting, which consists simply of displaying 2D images derived from
the volume data set by passing plane sections through it The derivation of the image on any plane section is a problem
of image resampling. An arbitrary grid of sample points on the section plane is selected, and the pixel value for each
sample point is determined either from the nearest voxel or from tri-linear interpolation from the eight voxels that
bracket the sample point. Giving the user interactive control of the position and orientation of the section plane in
multi-planar reformatting can help him or her explore the volume data set and gain understanding of its contents.

The remaining volume rendering methods implemented on Denali all make use of casting rays into the volume
through the pixels of a projection plane and determining each pixel’s color according to samples of the volume data
taken along the corresponding ray. In maximum intensity projection each pixel is assigned the maximum of the intensity
of the sample points along the ray. This technique is effective for exposing fine structure in the volume data, such as
blood vessels in medical data sets. In radiographic projection, each pixel’s value is determined by summing volume data
samples along the ray. In surface rendering methods, each pixel is assigned a depth value giving the point on the ray
where the sampled volume data passes a threshold corresponding to an interesting boundary surface. Then the pixels
are colored according to user-selectable shading algorithms to portray the boundary surface. The flexibility of the FBM
pipeline allows for the implementation of more elaborate rendering schemes which combine (blend) voxel data along

the ray.

6 SOFTWARE ARCHITECTURE

Kubota Graphics supplies the host software needed to access the functionality of the Denali system and to manage its
resources. The supplied software includes both the high-level application programming interfaces, which give users

access to the Denali graphics functionality, and the supporting low-level software elements, which directly control the
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hardware but are not normally visible to the user. The lower level software shields the higher levels from the details
specific to the hardware. The high level interfaces conform to industry standards, either official or de facto.

The low-level software base, denoted VLL, is broad in function; it includes the device driver function, basic window
management and resource management functions, 2D drawing, accelerated 3D graphics, and imaging functions. User
access via VLL is not necessary, since virtually all the Denali hardware functionality and performance levels are
accessible through supported higher-level interfaces.

The higher-level interfaces split into two groups: network-transparent interfaces and peer interfaces. The network-
transparent interfaces are all based on extensions of the X Window System, described below. They allow Denali to be
used as an output device for applications running on remote hosts. The peer interfaces are based on XPeer, Kubota

Graphics’ unique peer extension to the X Window system, also discussed below.

6.1 X Windows

Normal user access to the Denali display is through the X Window System, and certain extensions. X is an industry
standard, network-transparent window system based on a client-server model. It is developed and maintained by
Massachusetts Institute of Technology with the support of a consortium of comprising virtually all major workstation
vendors, including Kubota Graphics.

The X Server controls the interactive user workstation, consisting of the display surface and several input devices.
Several simultaneous client processes, running on the local host or remote hosts, may share the display surface, each
owning one or more windows. The client processes communicate with the server through the X protocol, which is a
convention for communicating window management functions and simple 2D drawing semantics. In a networking
environment, the X protocol rests on the lower-level basic network protocol in use (such as TCP/IP). When the client
and server reside in the same host, the X protocol can be supported by a shared memory transport mechanism.

Denali’s X Server is a well-tuned, high-performance implementation of X11R5, the current standard version of the
X system. It includes the standard MBX multi-buffering extension, implemented to make use of Denali’s hardware
features that support window-specific double buffering and the Zero Time Clear feature. Further supported extensions
are XInput, which handles general interactive input devices, Xtrap, which is a tool for debugging, SHM for shared
memory transport, and Shape, which provides non-rectangular windows. Denali’s hardware overlay is supported as an
X visual type.

The lowest-level interface to the X Server that application programs normally use is Xlib, a library of about 400
routines for basic window management, 2D drawing, and input handling functions. Also included with the X11R5
system is the Xtk tool kit, which is a core function library for constructing the elements of a window-based user
interface: buttons, dials, scroll bars, dialog boxes, and so on. In addition, the Alpha-based hosts run the OSF/1 operating

system, which includes Motif, a system for constructing user interfaces in a common style.

6.2 XPeer Extension

A unique feature of the Denali X Server implementation is XPeer, an extension to accommodate peer interfaces. A
peer process can access the Denali hardware directly, avoiding some overhead and data copy stages inherent in the X
Protocol, while still respecting the window management functions of the X server. A peer programming interface can
provide greater performance for the applications that link to it, especially for applications that have to send large data
sets to the graphics subsystem. Peer interfaces give up network transparency, so are appropriate only for applications
that run on the local host
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A peer process has privileges whose use could possibly interfere with the activities of other processes sharing the
display. Hence, the peer extension is not intended for direct use by application programs, but rather only to support
high-level programming interfaces. Several of the application programming libraries discussed below are (will be)

implemented as peer interfaces.

6.3 Portable GL and OpenGL

The GL, for "Graphics Library”, is the graphics programming interface provided by Silicon Graphics, Inc. for their
workstations. Although proprietary, GL has attained status as a de facto standard because of the number of applications
that have been written to it. In many ways, GL can be considered a lower-level interface that offers fewer favors for
the programmer, and it allows a finer degree of control of the graphics system. NPGL is a portable version of GL
4.0 developed by Nth Graphics, Inc. Kubota Graphics has worked with Nth Graphics, to port NPGL to Denali, as a
high-performance peer interface.

OpenGL is a new API, derived from, similar to, but not compatible with GL 4.0. Silicon Graphics has licensed OpenGL
to a number of vendors, and an industry Technical Review Board controls its development. Kubota Graphics includes

support for OpenGL in the planned Denali software architecture.

7 SUMMARY

This technical report provides architectural description of the Denali 3D graphics and imaging system. The Denali
design demonstrates parallel scalability at various levels of its deep pipeline. Its key innovation is the seamless software
and hardware integration for efficiently rendering three-dimensional graphics and imaging primitives, tailored for

evolving application domains, such as medical imaging and industrial design.
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