
Shading Compilers

Avi Bleiweiss

ATI Research Silicon Valley

GPU evolving in fast pace

Shader Model 3.0

Extended resources

Dynamic flow control

Multi GPU systems

PCI Express bus

Evidently divisible

High level challenges

Encapsulate description

Virtualize GPU processors

Scheduling, optimization

Intimate hardware

Hiding shading languages

Multi GPU shader partition

Remapping GPU processors

Source level debugger

Ashli shading technology

Hiding shading languages

Multi GPU shader partition

Remapping GPU processors

Source level debugger

Content management

Single representation

Ties to graphics API

Higher level abstraction

Microsoft Effect format

Parameters and functions

Techniques and passes

Any shading language

Ashli for Effect - AshliFX

Multi lingual Effect compiler

AshliFX

Effect
Format

ParameterTechnique/
Pass

StateShader

Application

Effect
Format

Assembly/
Metadata

To
Graphics APIAshli

XML

Implicit language binding

Extracted shader filtering

Avoid semantics, annotations

Metadata to Effect state

Effect state observer

Graphics API neutral

GPU incentive domains

Auto generated description

Target platform seamless

AshliDI -

Digital imaging streaming

High performance

Detail and quality

Extended dynamic range

Stream based interface

Image tree, feedback

AshliDI

Image
Tree

StateTextureGeometry

AshliFX

Effect
Format

To Graphics API

Shader

Ashli

Assembly/
Metadata

Image
Feedback

Directed graph, no cycles

Nodes - image operators

Attributes: region of interest

Source images - leaves

image #0 image #1

blend

image #2

convolve transform

blend

root image

Tree to Effect transform

Constitutes rendering format

Techniques - sub trees

Nodes onto passes, pipe state

Seamless language binding

Single node

Gaussian filter (5x5)

Region of interest

Predominant stream gather

Intermediate image results

Previous render-to-texture

2D rendering API

Extensible to 3D for volumes

Feedback storage stream

Hiding shading languages

Multi GPU shader partition

Remapping GPU processors

Source level debugger

Multi GPU affordable

PCI Express reaching 4GB/sec

Image, time based partition

Adaptive tiling more scalable

Geometry, textures replicated

Vertex limited lower gains

Vertex, pixel separate entities

Self resourced

Concurrency higher on pixel

Single amplification source

Vertex turning into Geometry

Vertex Shader

Pixel Shader

Tessellation Shader

Geometry Shader

Pixel Shader

Geometry-Pixel ModalityVertex-Pixel Modality

Rasterizer

Rasterizer

Vertex Vertices

Vertex
Vertices

Primitives

Pixels

Pixels

Pixels

Pixels

Input, collection of vertices

Tessellation shader refines

Geometry shader

Primitive input, output topology

Multiplicity at top, mid pipe

Inter shader communication

Shared resources

Shader task scheduling

Pipe dynamics

More degrees of interaction

Walkthrough example

Motion blurred, displaced geometry

Triangular control mesh

Recursively refined

Parametric space displacement

Neighbors for derivatives

Fine level of detail

Courtesy Brian Sharp 2000

0

aperture

0

1

2

1

2

time

Motion blur on geometry shader

Aperture triangle pair

Samples interposed in hull

Geometry critical path

Pipe behavior -

Shader level macro threads

Shader results exposed

GPU fed in pipe manner

Single copy scene description

Two GPUs pairing options:

GPU #0
tessellation+geometry

GPU #1
pixel

GPU #0
tessellation+pixel

GPU #1
geometry

GPU #0
tessellation

GPU #1
geometry+pixel

scene scene scene

1 1 2inter GPU copy

Automate shader partition

Task based

Compilers figure shader cost

Amplification factor, copy

Evolve multi GPU API

Simple, no user intervention

Hiding shading languages

Multi GPU shader partition

Remapping GPU processors

Source level debugger

Consistent instruction set

Vertex, pixel little adversity

Vertex texture fetch

Retargeting pixel onto vertex

Seemingly underutilized vertex

Pixel exploits higher parallelism

Vertex, pixel resource match

4 vs. 16 samplers, respectively

Automate processor remapping

Ashli vertex-to-pixel conversion

Exploits multipass

Analyze performance trade offs

Vertex streams as textures

Vertex format

Attributes of any type

Packed and Unpacked

Vertex storage format

Contiguous vertex

Addressing: base, attribute stride

Per component fetch

Padded vertex

Four component IEEE float

Single attribute pointer

Vertex and pixel inputs

16 vs. 10, respectively

Vertex buffer fetch

Pixel texture access

Mapping criteria

vertex inputs + samplers <= 16

Vertex and pixel outputs

12 vs. 4, respectively

Ashli incorporates

Pixel Virtual Color Outputs

Color outputs exceeding cap

Code segmentation

Two pass rendering

Vertex-to-pixel

Texture vertex fetch

Processing

Output mapping

Passthrough vertex

Inverse output mapping

HLSL vertex shader

Vertex texture

Ashli emits detached shaders

Vertex-to-pixel, passthrough

Metadata

Inverse output mapping

Two pass overhead

Deployment and recirculation

Speedup observed

Larger mesh size

Higher compute to fetch ratio

Operate on vertex collection

Hiding shading languages

Multi GPU shader partition

Remapping GPU processors

Source level debugger

Debugging increasingly important

Long, complex shaders

Microsoft Visual Studio .NET

High level and assembly

File/line # and pixel area

No direct hardware

Shadesmith

Fragment assembly, on hardware

Register watch, inline editing

Platform dependent

Source high level - Ashli

Language orthogonal

Inspecting and editing code

Less so for hardware savvy

Runs on graphics hardware

Pixel/Fragment shader

Visual validation

File/line # break points

Debugger exposure

Add/remove break point

Continue, single step

Query current break point

Two pass

Output substitution

Replace lhs with color output

Degenerated tree nodes

Break point to root

Break point delimited program

Valid sub tree

Break point inside conditional

Replace lhs inside if (and else)

Replace lhs before conditional

Break point in a loop

Conditional unrolling

Count set to a cap

Runs on hardware

Tailored to audience

Content creator or

Hardware intimate

Performance not critical

Domain specific streaming

Hiding shading languages

Multi GPU load distribution

Task based, proper API

GPU processor virtualization

Debugger, seriously taken

Ashli/AshliFX on multi systems

32/64 Windows and Linux, Mac OS X

Link, contact:

http://www.ati.com/developer/ashli.html

devrel@ati.com

Acknowledgement:

Raja Koduri, Evan Hart, Joshua Barczak, Nikki Lukas

