

Chapter 3. Shading Compilers

Avi Bleiweiss

Avi

 Shading Compilers

 Avi Bleiweiss
 ATI Research, Inc.

Introduction

Graphics hardware evolution in the past year has been highlighted by improved shading
resources, the introduction of dynamic flow control and the emergence of multi-GPU
system configurations. Executed program length increased substantially and register
availability became more affordable. As a result, compiler support for segmenting a
shading program to fit hardware constraints has diminished and is mostly required on low
cost hardware platforms. The presence of dynamic flow control functionality has made
true loops and conditionals, nested or un-nested, first class citizens in a shader
description. Dynamic branching brings speed-ups to many algorithms that contain early
out opportunities, while also simplifying shader programmability. Data dependent flow
control might first be looked at odds with the SIMD architecture nature of the GPU. Non-
linear flow control usually results in poor efficiency manifested by idling internal
processors and other resources. Shading compilers however have been alleviating these
shortfalls by transforming data dependent structures into linear flow control nodes
operating on large data sets. Finally, multi-GPU load partition schemes are now in place
to better address performance scalability in several application domains. Both image and
time distribution methods have been deployed and leverage of the significant high
bandwidth of the relatively newly introduced PCI-Express® [PCIExpress 2004] bus
architecture.

The remainder of the notes describes selected topics of the rather broad shading
compilers gamut. Shading technology has been evolved in recent years where the set of
challenges identified for compilation became evidently devisable into high and low level
spans. Shading representation with improved interfaces to the rendering sub system,
toning down shading language differences, shader partition across GPUs, and the
remapping of GPU processors are some of the matters considered high level. Traditional
and the more conventional compiler technology aspects e.g. optimization and instruction
scheduling, require more intimate hardware knowledge. The discussion hereafter is
mostly concerned with high level shading compiler subjects yet it is result oriented and
demonstrates compiler code emission. The topics are organized as follows: Shader
Representation, Multi-GPU Shader Partition, Remapping GPU Processors, and finally a
Source Level Debugger. In most of the sections code snippets of source representation (or
shading language), assembly level target and rendered image snapshots are attached to
improve clarity. Throughout the notes references are made to Ashli [ASHLI 2003], a
shading technology toolkit developed at ATI for the past several years.

3 - 1

Shader Representation

Graphics hardware has evolved from a fixed function pipeline into a programmable
vertex and pixel processors. Initially, programmability was exposed in low level assembly
standards, now commonly referred to as Shader Model 2.0. Accessibility was fairly
limited to users, who traditionally were accustomed to higher level shading abstractions
and increased complexity. The industry has been properly reacting to this interface void
by introducing graphics hardware shading languages. Most influential are Microsoft
DirectX’s HLSL [HLSL 2004], OpenGL’s GLSL [GLSL 2004] and NVidia’s Cg [Cg
2004]. The languages inherited some core functionality from the well established Pixar’s
RenderMan® [RenderMan® 1986] shading language, and thereby resemble many
similarities across them. Nevertheless, differences and ties to either a specific graphics
API or a hardware platform have made them take their own development path and hence
supporting tools. Ashli was one of the first shading tools to take in multi lingual shader
descriptions at arbitrary level of complexity and produce platform independent assembly
code.

The reality of multiple shading languages has led the graphics community strive at
defining higher level abstraction standards, for which differences are as much seamless.
Hiding language details is desirable to users, who are less intimated with hardware
knowledge and need not be concerned with fast paced GPU architectural evolution.
These standards have the added benefit of addressing broader shading to overall
rendering and appearance control interfaces. One such standard is Microsoft’s Effect
format. Effect had practically become the de-facto portable shading representation in both
the gaming and digital content creation markets. Effects can be written with a high level
language or with shader assembly semantics. The Effect format views a high level shader
as a collection of parameters and functions. The original Effect internals call for types
and expressions to be a valid HLSL shader reference. However, the format is generic
enough to embed shaders of any other language. The Effect encapsulates rendering state
and any combination of vertex and pixel shaders to define a rendering style. It is easily
extensible to map shaders on newly evolved graphics hardware processors as they
become realizable e.g. tessellation and geometry. Shading language abstraction is only
one part of a solution to an inevitable programmability concern. It provides harnessing to
the growing GPU power without the need of in depth processor level coding knowledge.
There still remains the constraint of having a shading language bound to a particular
graphics API. Cross language translation support by compilers is one way to circumvent
the API barrier.

Ashli toolkit has been recently augmented to support multi-lingual Effect format
representation. AshliFX is the relatively new software component introduced for this
purpose. In addition, Ashli provides the generation of GLSL shaders from any of HLSL
and RenderMan® descriptions, primarily for smoother inter language transition. The
remainder of this section introduces AshliFX, its API and main software components.
Then, a sample GPU based image processing library – AshliDI - illustrates facilitating
AshliFX in hiding any notion of shading language and hardware specifics. The
discussion hereafter assumes some familiarity with the Effect format basics.

3 - 2

AshliFX

The following diagram in Figure 1 depicts AshliFX interfaces and its interaction with an
application attached to Ashli:

Effect
Format

Parameter Technique/
Pass

StateShader

 Ashli

To Graphics
API

Effect
Format

 Application

 AshliFX

Assembly/
Metadata

 Figure 1: Application in an AshliFX/Ashli Framework

An application takes in an Effect format and passes it to AshliFX. The Effect abstraction
may be bound to any of HLSL or GLSL. Binding is either explicit or implicit, where for
the latter the representation optionally embeds a language pragma. The Effect discovery
mechanism provided is hence fully automatic and the user just needs to query the bound
language any time post parsing. The Effect format is further rendered into its logical
components: parameters, functions, techniques, passes and annotations. Components are
exposed to the user via API query methods. They are accessed being qualified by either a
handle or by name. The handle is merely a zero based running index, tied to component
order of appearance inside the Effect format. A technique is made up of one or multiple
passes, each containing rendering state assignments. At a minimum, pipe state must have
one of vertex or pixel (or both) shaders assigned. Shaders are identified with a compile
target and an entry point function name, or they could be assigned an assembly block. In
addition, entry point default values may optionally be assigned to uniform arguments,
once present. AshliFX provides an Effect State Observer, a user implemented interface

3 - 3

that furnishes callbacks into an application for setting graphics API state. The user
attaches a state observer and queries to either parameter or pipe state invokes one of the
callback state methods. Callback methods are provided for light, material, render,
sampler, shader and transform categories and all have the same signature:

void set{Category}State({Category}State state, int index, const char* value);

An Effect observer callback returns an enumerated type that identifies an API neutral
pipe state item, an optional index indicating a particular state within an array of Effect
states and an assigned value. For example the states ZEnable, LightAmbient[1] and
VertexShaderConstant[3] return indices of -1, 1 and 3, respectively. Enumerated Effect
pipe state is graphics API independent and an application is free to map them onto any of
Microsoft DirectX or OpenGL state semantics. AshliFX validates Effect state keys for
each pass to match Microsoft Effect States definitions.

AshliFX shader interface furnishes the query of Effect embedded high level shader(s) or
assembly block(s), per pass. API methods are provided for retrieving compilation target
and extracted shader(s) for each of the GPU processors. AshliFX composes vertex and
pixel high level shaders out of global parameters and a collection of functions, amongst
them the entry point as specified by the shader assigned compile expression. In
constructing the shaders AshliFX filters out non-compile related Effect data. Some of the
info excluded from the shaders coalesced includes string and texture parameters,
annotation(s) and semantic, the latter in the case of a GLSL binding. Effect extracted
shaders are passed onto Ashli for compilation and the generated metadata and hardware
assembly shaders are deposited back into AshliFX. Ashli metadata is parsed internally by
AshliFX and constant and sampler registers and their assigned parameters are mapped
onto Effect shader states. The user then need not be concerned with parsing Ashli
metadata - pass state provides all the necessary pipe settings for rendering. Optional
defaults assigned to entry point uniform parameters (HLSL) can be further queried by
either a handle or by name. Returned parameter name, default value and number of
elements directly match Ashli’s set default methods signature. Each default parameter is
further expected to be const tagged for code generation efficiency.

The Effect format also defines annotation framework. Annotations are user specific data
that can be attached to any of technique, pass, or a parameter. One or multiple
annotations can be grouped together to add information to individual components, in a
flexible way. The information can be read back and used any way the application desires.
An annotation can also be added or edited dynamically in AshliFX. Annotations are
primarily useful for interface customization. Typically, they will incorporate a template
for automatically depicting user interface elements, such as sliders with delimiter range
values. Similarly, they can hold binding information to geometry and texture objects.
AshliFX API methods allow for querying annotation type, name and assigned data value
by either a handle or by name.

Figures 2 and 3 illustrate an AshliFX/Ashli workflow for an HLSL bound Effect format,
which compiles per pass onto OpenGL ARB fragment code. It demonstrates platform
API independence regardless of the native language binding. Both code snippets and a

3 - 4

snapshot of an image, rendered inside a Maya® viewport on ATI X 800 series hardware,
are shown:

 Figure 2: HLSL bound Effect compiled to OpenGL ARB Fragment Program

3 - 5

 Figure 3: AshliFX/Ashli Workflow in a Maya Plugin Context

AshliDI
Creating high performance and accurate image processing solutions generally requires a
deep knowledge of graphics hardware API. A development environment, for which users
can take full advantage of the ever growing GPU power seamlessly, is highly desirable.
Apple’s Core Image [CoreImage 2004] is one platform that leverages programmable
graphics hardware by relieving users from any pixel level coding burden. Image
processing programs are expressed at a simple high level compact code and the
underlying library takes care of GPU optimization and precision considerations. The end
result produces detail, quality and range comparable to a CPU, but at a much higher
interactive responsiveness. This section introduces AshliDI - Ashli for Digital Imaging -
an image processing staging library that encapsulates graphics shading language and

3 - 6

hides it from the programmer. Figure 4 illustrates AshliDI interfaces and connectivity in
an AshliFX/Ashli framework:

 To Graphics API

 Image Tree
 Components

Geometry Texture Shader State

 AshliDI

 AshliFX

 Ashli

Effect Format

 Figure 4: AshliDI High Level Overview

AshliDI is intended for imaging markets that are intensively seeking the use of a GPU,
and include digital photography, film post production, scientific visualization and desktop
publishing. AshliDI is graphics hardware API agnostic and caters to both Microsoft
DirectX and OpenGL. It takes in conventional image processing abstractions in the form
of image tree components. AshliDI provides an API to construct the image tree
procedurally without requiring any shading language knowledge. At the tree nodes reside
image operators that include geometry and color space transforms, point and area filters,
compositing, and halftones. Nodes can optionally hold processing attributes for defining
type conversion and region of interest. Leaf nodes are source image(s) provided by the
user. An operator node essentially maps onto a render-to-texture pass in the graphics
context. The traversal of the image tree results in a sequence of rendering passes for

3 - 7

which the previously rendered texture is a leaf node to a top level node. The final image
is produced at the root of the tree. AshliDI performs its processing using 32-bit IEEE
floating point math. This means that a considerable deep image tree with high bit
accurate image leaves can perform its processing steps with no loss of precision. The
library is designed to cope with a single common image file format, anticipating all file
format conversion to occur outside its scope. ILM’s OpenEXR [OpenEXR 2004] is a
high dynamic range image file format that supports both 16 and 32 bit floating point.
OpenEXR fits well AshliDI image processing modality and overall design for being
platform and system independent.

The image tree is first converted into an Effect format representation. The Effect
generated is bound to either HLSL or GLSL, based on the graphics platform. The tree is
initially searched for dependencies and is broken into separate rendering entities for
which connectivity is loose. Trees are in essence directed graphs without cycles. Leaf sub
trees take as inputs source images provided by the user. Figure 5 depicts an image tree
with three source images as inputs. Images 0 and 1 take a unique path until blended with
the transformed image 2. Sub trees for intermediate image generation are highlighted:

root image

blend

convolve transform

 image #2

image #0

blend

image #1

 Figure 5: AshliDI Sample Image Tree

Sub trees are then mapped onto Effect techniques. The relation between the sub trees in
terms of render order and the passage of intermediate image results from one technique to
another are specified in the Effect format by means of annotations. Operator nodes of the
sub tree are designated each to an Effect pass. Node type of operation and its attached
attributes map onto pass derived pipe state. The Effect data structure constitutes the
rendering format of the transformed image tree. AshliDI uses then the AshliFX/Ashli

3 - 8

framework described in the previous section for compiling the Effect representation and
making its components available for rendering. AshliDI query interfaces include
geometry, texture, state and shader sections. A rectangle geometry entity delimits the 2D
region of interest specified by the user. Source leaf node images, in a precision prescribed
by the user, are returned to the user for the first pass of a leaf sub tree. Intermediate image
results, inputs to non leaf sub trees, are the render-to-texture products of the previous
pass. Any of high level HLSL or GLSL shaders, or post compilation assembly entities are
provided in the shader interface. Finally, pipe state per pass derived from the image
operator node is available in the state interface segment.

AshliDI supports a subset of image operators based on market importance. The design is
scalable to accommodate additional operators as they deem necessary. AshliDI is a
staging library independent of the graphics API and provides a plug-in style framework
to fit into an imaging application like Adobe’s Photo-Shop®.

Multi-GPU Shader Partition

The increased bandwidth of the PCI Express® bus architecture, reaching throughputs of
up to 4GBytes/sec, has made multi GPU configurations more affordable for scalability
and increased performance purpose. Expedient peer-to-peer data transfers of partially
rendered scenes and synchronization state were the prime motivation for exploring
concurrency across multiple GPUs. Image and time based subdivision methods have
been most popular in devising load balance criteria of multiple GPU architectures. Image
or screen based tiling can be made fairly adaptive and achieve a relatively good
distribution of the load. Similarly, as long as frames are consistent, altering them across
yields a reasonable division of labor amongst GPUs. For the sake of the following
discussion scene geometry and textures are assumed to be replicated on all GPUs. This
simplifies the software model for concurrent GPUs and avoids unnecessary copy
overhead. The current GPU architecture exploits the rather straight forward vertex-pixel
performance modality. The vertex shader is a one-to-one vertex map and holds then an
amplification factor of one. Performance wise, the vertex shader execution rate is fairly
predictable, barring flow control and cache behavior. The rasterizer however, is a one
vertex (or a few vertices) to many pixels type of generator. Hence, its multiplication ratio
is any number based on the primitive screen space area. In the present GPU framework
the vertex and pixel shaders are separate entities, each with their own set of resources,
running multiple execution threads. In general, there is a higher concurrency degree in
the pixel shader compared to the vertex shader. Vertex limited scenes would have then
very little performance gain when run on multiple GPUs - they both have to render the
same geometry. Pixel shader bound rendering context, for which multiple GPU
architectures are intended for in the first place, are more likely to exhibit speedups in
ranges up to as close to the optimal linear scale. The vertex-pixel performance modality
discussed so far is rapidly turning though into a more involved geometry-pixel one.
Figure 6 illustrates the graphics pipeline in both the vertex-pixel and geometry-pixel
forms. The geometry-pixel paradigm is of more pipe stages each with varying dynamics
and might require the reassessing of load distribution considerations in parallel GPUs
framework.

3 - 9

 Vertex Vertices

 Vertex Shader

 Tessellation Shader

Vertices
Vertex

 Geometry Shader

 Rasterizer Primitives

 Rasterizer

Pixels
 Pixels

 Pixel Shader

 Pixel Shader

 Geometry-Pixel Modality Vertex-Pixel Modality

 Figure 6: GPU Vertex-Pixel vs. Geometry-Pixel Modality

The input to the geometry-pixel pipe is a collection of vertices. The tessellation shader
takes in control points of an implicit surface representation and performs a refinement
process that yields smoother geometry. The input surface format is in parametric space
and embeds both positional and topological information. The finer level of detailed
geometry produces vertices of count larger compared to the input collection size. The
tessellation engine hence departs from the traditional one-to-one predecessor vertex
shader and forms a geometry amplification stage at the top of the graphics pipeline. A
single vertex input implies a vertex shader behavior of the tessellation unit, identical to
the one in the vertex-pixel modality. The tessellation shader passes its results to the

3 -10

geometry shader, the next pipeline stage. The geometry shader takes in vertices grouped
into primitives e.g. one vertex for a point, two vertices for a line, and three vertices for a
triangle. The geometry unit is capable of outputting multiple vertices forming a single
selected primitive topology. Topology options are one of a triangle-strip, a line-strip and
a point list. Any invocation of the geometry shader could potentially vary the number of
primitives emitted. As such the geometry stage introduces a manifold multiplicity form
mid pipe. The rasterizer model and onwards remains for the most part identical to the one
exists in the vertex-pixel modality. Geometry-pixel shader stages all share the same
processing engines and resources. As a result connectivity is much more transparent
amongst the shader units and outputs from one can be redirected as input to another
almost seamlessly. The introduction of both the tessellation and the geometry shaders
with intrinsic expansion properties clearly changes pipe dynamics. This potentially opens
up alternative schemes for partitioning load across GPUs. Next, a displaced and motion
blurred geometry will be used as a walkthrough example to further illustrate internal pipe
interaction.

A subdivision patch of a triangular control net with a topological valence of six vertices
is assumed the input to the tessellation shader. Subdivision surfaces are evaluated
recursively and the regeneration factor of vertices is fairly predictable for every step.
Figure 7 demonstrated a triangular net following one refinement step:

 Figure 7: Refinement of a Triangular Control Net [Sharp 2000]

The number of refinement steps applied to the surface varies from one patch to another. It
is typically to require a finer level of detail once the geometry is displaced. Displacement
map is performed in the tessellation shader after the final evaluation step. Vertex
displacement computation is conducted in parametric space, where neighbor tangential
derivatives are available for accurate normal recalculation. The tessellation shader
provides its produced vertices on to the geometry shader. The geometry shader performs
motion blur operation on the previously displaced geometry in an orthogonal manner.
Triangle primitives are the input anticipated at the geometry unit. Let’s define time 0 at
which a hypothetical camera aperture opens on a scene, and time aperture is the time at
which the hypothetical camera aperture closes. Input triangles to the geometry shader are
considered at time 0. The motion blur method extrudes the input triangle by first linearly

3 -11

transforming it from time 0 to time aperture. The triangle pair of the delimited aperture
time space forms a convex hull as illustrated in Figure 8. Triangle samples are then
interposed inside the hull, each depicting a snap shot in time. Extruded triangles are being
emitted and passed onto the rasterizer. The motion blur method described is hence an
additional mid pipe geometry growth source that further perturbs load distribution
variations.

 2

2 time

1

aperture

 0

 1

0

Figure 8: Geometry Shader - Motion Blur Primitive Expansion

The displaced, motion blurred geometry walkthrough presented inside the geometry-pixel
pipeline demonstrated performance dynamics alters substantially compared to the vertex-
pixel modality. In fact, the more subdivision refinement steps and increased motion
aperture triangle samples might easily shift the load towards the geometry part of the
pipe. In addition, tessellation, geometry and pixel shaders are macro threads, all running
and sharing the same resources. Micro computational threads are scheduled and launched
for each of the shader units to explore parallelism as much as possible. Outputs of each
shader type are stored in a memory resource that is exposed both internally and
externally. The availability of mid pipe shader results to the outside world is a leverage
point in a multi GPU configuration. A graphics system for which one GPU feeds the
other in a pipeline manner will be considered for shading load distribution. Figure 9
depicts potential shader partitions across two GPUs. In all three configurations the
tessellation shader is executed in the GPU located at the top of the chain. GPU #0 is the
only one who has access to the single copy scene description. Configuration options then
vary by the pairing of shader units in one or the other GPUs. Pairing choice is arrived at

3 -12

by optimally dividing overall shading computational labor and amortizing PCI-Express
copy overhead for passing results from one processor to the other.
 scene scene scene

 GPU #0

 tessellation
 GPU #0
 tessellation+
 geometry

 GPU #0
 tessellation+
 pixel

 GPU #1

 geometry+
 pixel

 GPU #1
 pixel

 GPU #1
 geometry

 Figure 9: Multi-GPU Shader Partition Options

In the left column of Figure 9 tessellation vertices are copied from GPU #0 to GPU #1,
who runs both the geometry and pixel shaders in sequence. In the middle column the top
GPU performs tessellation and geometry shaders and the vertices of the latter are passed
on to the rasterizer of GPU #1. The third option on the right has both the tessellation and
pixel shader executed in the top GPU and the geometry shader runs on the second GPU.
Here, the tessellation vertices are passed from GPU #0 to GPU #1 and then the vertices
emitted by the geometry shaders are passed back to the first GPU. Hence, there are two
copy operations of results from one GPU to the other.

Multi-GPU schemes provided are mostly for future reference and intended to rethink
alternate load partition techniques.

Remapping GPU Processors

Vertex and pixel shaders in Microsoft DirectX Shader Model 3.0 have been simplified
considerably compared to earlier versions. Instruction set on both processors has been for
the most part identical with fairly few exceptions. One particular new feature introduced
in Shader Model 3.0 is vertex texture fetch, which lets the vertex processor read data from
textures. The ability to access textures on both the vertex and pixel processors opened an
opportunity for retargeting pixel shader code onto the seemingly underutilized vertex
shader. Programmers have exercised vertex texture fetch in their applications, touting the
potential of improving overall GPU load balance. On the other hand the pixel processor
explores a much higher degree of parallelism compared to the vertex processor and is
natively designed to perform efficient texture fetches. Remapping vertex code, which
includes texture fetches, onto the pixel processor might prove after all better GPU
performance in certain circumstances. In addition, making GPU processor mapping as

3 -13

transparent as possible to the programmer is highly desirable. Ashli implements an
automatic vertex-to-pixel processor code conversion, providing a vehicle for analyzing
code execution trade offs between the vertex and pixel processor domains. The technique
also enables exploring geometry tessellation functionality, expanding the limited one-to-
one vertex processor model into perhaps a few-to-many type of amplification.

In shader model 3.0 we can almost safely exclude instruction set adversity between the
vertex and pixel shader. Similarly, internal shading resources on both processors are
fairly close matching. Sampler registers is where most of the disparity lies - the pixel
shader has sixteen over the four vertex ones. This makes a truly bi-directional processor
mapping difficult to realize in a compiler, but works though in favor towards the vertex-
to-pixel path. The items remained to implement for the vertex-to-pixel conversion
process are then: the prolog fetch of vertex attributes from textures and the mapping of
vertex outputs to pixel multiple render targets.

The vertex-to-pixel conversion path implies a two pass rendering process. It is assumed
the vertex stream(s) has been redirected into a vertex buffer type render target(s). For the
first rendering pass then, one or multiple IEEE floating point component 2D textures are
available to the pixel processor for fetching vertex attributes. The input vertex format can
have attributes in any of one, two, three or four component combinations as depicted in
the following data structure:

Two primary vertex data storage models were considered for vertex-to-pixel conversion:
packed and unpacked. In the packed mode vertex data is stored contiguously in video
memory, all in one texture. This lends itself into better cache locality when accessing
vertex attributes. The compacted vertex data storage implies an addressing mode
composed of one base pointer and a set of fixed offsets to each of the attributes. The
packed storage version results in a per-component fetch from texture memory. When all
vertex attributes are of four components (e.g. padded as necessary), fetch could be
commenced on a per attribute basis, thus yielding a much efficient vertex data transfer. In
the unpacked mode each vertex attribute is stored in a unique texture. An attribute texture
is associated with a base pointer and offsets are format implicit. The two vertex storage
choices represent traditional memory bandwidth to compute design trade offs. In both
storage models input geometry mesh dimensions dictates texture width and height
properties.

3 -14

There are twelve vertex shader outputs and four pixel shader color outputs defined in
Shader Model 3.0. To address this constraint for the vertex-to-pixel conversion, Ashli
incorporated the notion of virtual color outputs for the pixel shader. Pixel shader outputs
could be conceivably unbounded, but are currently set to top sixteen, primarily for
practical purposes. For simplicity, Ashli keeps internally a fixed implicit vertex output to
pixel output table as illustrated below (C# stands from pixel color output):

Vertex outputs exceeding render target cap for Shader Model 3.0 (e.g. four) results in
segmenting the converted pixel shader to fit hardware constraints. Shader resource
virtualization is an embedded technique in Ashli and plays handily in the vertex-to-pixel
conversion process.

The converted vertex-to-pixel shader would be executing then three steps. First it
performs texture vertex fetch for all of the present attributes. Ashli provides an optional
ContiguousVertex compile time flag to produce pixel code tightly coupled with the vertex
data storage format expected. Following the vertex fetch prolog the converted shader
commences with the original vertex shader processing part. Unified (for the most part)
vertex and pixel shader instruction set makes this part relatively seamless. Finally, vertex
shader outputs are mapped onto pixel shader color outputs, based on the fore mentioned
translation table.

As part of the vertex-to-pixel conversion process Ashli also generates a passthrough
vertex shader, intended to be used in the second rendering pass. The converted pixel
shader and the passthrough vertex shader are detached from each other and assume no
parameter linkage across them. The passthrough vertex shader takes in the produced
color outputs by the pixel shader as vertex attributes and remaps them back onto vertex
outputs. The inverse mapping of pixel color outputs back onto vertex outputs is available
to the application in Ashli’s pixel section of the metadata produced.

3 -15

The workflow steps for an application to embed the vertex-to-pixel shader conversion
process are illustrated as they are related to the shading portion:

To conclude this section an Ashli code generation example of the vertex-to-pixel
conversion process is depicted in Figure 10. The input is an HLSL vertex shader, which
includes a vertex texture fetch statement. The pixel shader converted code highlights the
prolog vertex attribute fetch from texture, assuming packed vertex storage format. Output
mapping onto two physical pixel color outputs terminates the code. The pixel section
metadata illustrates the pixel color physical to virtual output correspondence. This info
further assists the application in performing inverse mapping back to vertex outputs e.g.
C0 maps back to vertex position in clip space and C4 onto the vertex second texture
coordinate set. Finally, the simple minded vertex passthrough shader is outlined – vertex
attribute inputs are the ones coalesced from the render targets of the previous rendering
pass.

Being multi rendering pass, the vertex-to-pixel conversion process incurs a copy
overhead of vertex attributes stored in video memory render targets back onto the vertex
buffer. This overhead is particularly noticeable for a small sized geometry mesh. Here,
vertex-to-pixel conversion is performance inferior to running the shader on the vertex
shader. However, the overhead is diminished as either the mesh size of the geometry
increases or the computation vertex shader core is long enough. The pixel shader is able
to launch more execution threads compared to the vertex shader and hence the speedup
edge. The vertex-to-pixel shader mapping when used sparingly deems beneficial to
certain applications. Its added value is primarily to analyze graphics pipe dynamic
behavior and experiment with algorithms that constitutes geometry multiplicity.

3 -16

 Figure 10: Vertex-to-Pixel Conversion Code Sample

3 -17

Source Level Debugger

As GPU becomes more powerful to handle long and complex shaders, debugging tools
emerged an increasingly important item for graphics hardware users. Microsoft® Visual
Studio® .NET [Microsoft 2004] and the Shadesmith [Purcell & Pradeep 2003] amongst
others are examples of shader debugging offerings. Microsoft .NET tool supports
debugging both assembly-level and high-level language, vertex and pixel shaders. The
.NET debugger tool is very powerful and provides both file/line and pixel area type of
break points, and allows inspecting hardware register content. Nevertheless, no
debugging support is available for direct hardware vertex and pixel processing.
Shadesmith on the other side of the spectrum provides an automatic way to debug
fragment programs and runs on graphics hardware. The user can set watch registers and
examine them for all pixels and potentially could edit the program inline, without the
need of exit and rerun. Shadesmith is an assembly level debugger and is platform
dependent.

In Ashli we wanted the shader debugger to be source high-level language, orthogonal to
all the languages supported e.g. HLSL, GLSL and RenderMan®, and most importantly -
run on hardware. The intended user for Ashli debugger is more at the level of the content
creator for inspecting and editing shader source and less so for the hardware savvy. The
debugger aids programmers to write lengthy shaders and debug for correctness directly
on graphics hardware, with minimal or no source intrusion. Counter to debugging a
program on the CPU, shader debugging process rather employs visualization for code
validation. No hardware shading state is available for review in Ashli’s debugger and it is
only applicable for the pixel shader.

Ashli implements a basic source level debugger that is exposed in the API via a handful
of methods. Debugging functionality includes adding and removing a file/line type break
point, continue to the next break point, single stepping source statements and querying
the current break point. Ashli debugger automatically replaces an lhs (left-hand-side) of a
break point assignment statement with a pixel shader color output. The code generated by
Ashli for a given break point constitutes the section preceding the break point, inclusive.
The user adds or removes source break points by making the calls:

void addBreakPoint(const char* line);
void removeBreakPoint(const char* line);

The add/remove break point call argument is of the form: <file name>|<line # > e.g.
matte.sl|76. Once break points have been established the user will invoke a compile
session using the invoke method. The invoke method will get code generated for the
source delimited by the first break point. The user will then optionally call either the next
or the step methods:

bool next();
bool step();

3 -18

These methods are for all practical purpose identical to the invoke one, aside from
maintaining all the internal compiler state established by the first invoke call, for the
purpose of reuse. The next method advances the program to the next break point and
generates code for the new source extent, set forth. The step function progresses one
statement at a time, for finer grain program advancements. Finally, the user can query the
current state (file/line) of the source break point, including the single step offset, relative
to a break point. This call is useful in highlighting the source code designated break point
line on the programmer’s editor end:

const char* getBreakPoint() const;

Debugger break point validation inside Ashli is a two part process. First, original pixel
shader output(s) are searched and substituted with a dummy local variable. Then, the lhs
of the current break point assignment is replaced with a color output. The expression tree
constructed internally in Ashli results in an intentional degenerated nodes e.g. from the
newly designated output node all the way to the root of the tree. The valid expression sub
tree that represents the break point delimited program segment is extracted for code
generation. The debugging of dynamic flow control statements requires more attention
and has not been worked out to its full extent. For a break point inside an if or an else
block, the lhs of both the marked assignment statement inside the block and the one right
before the block will be replaced by a color output. This is to insure the case for which
branches are not taken for some of the pixels and a color output assignment is always
present in the program. Ashli maintains the ability to unroll loops conditionally in certain
scenarios when dependencies are only partially resolved. This is despite the dynamic
flow control support in Shader Model 3.0. In the case of a break point inside a loop, the
loop could possibly be unrolled internally and for every debugger continue call the count
is incremented by one till it reaches a runtime cap set by the user.

Figures 11 and 12 depict the use of Ashli shader debugger and illustrate both code
generation and visual code validation. In the left column of Figure 11 the RenderMan®
spiderweb source shader is highlighted with two breakpoints set for debugging. The
generated pixel shader assembly code for each of the breakpoints is shown in the middle
and right column of the figure, respectively. Total number of instructions executed for the
first break point is 53, and 60 instructions for the second one. The left image of Figure 12
demonstrates a partial spiderweb image delimited by the first break point set, for which
only the radial webs are rendered. The right image is the result of the complete shader
and both the radial and tangential webs are included. The Ashli viewer application was
used to render the spiderweb images on an ATI X800 hardware platform.

3 -19

Figure 11: Ashli Source Debugger, Code Generation Sample

3 -20

Figure 12: Ashli Source Debugger, Visual Results Sample

References

[ASHLI 2003] ATI: ASHLI - advanced shading language interface,
http://www.ati.com/developer/ashli.html.

[Bleiweiss & Preetham 2003] Avi Bleiweiss, Arcot J. Preetham: ASHLI – Advanced
Shading Language Interface, Siggraph 2003 Real-Time Shading Course Notes

[Cg 2004] Nvidia: Cg Shading Lnaguage,
http://developer.nvidia.com/page/cg_main.html

[CoreImage 2004] Apple: Core Image, Ultra Fast Pixel Accurate,
http://www.apple.com/macosx/tiger/coreimage.html

[HLSL 2004] Microsoft: DirectX Shading Language,
http://www.microsoft.com/windows/directx

[Microsoft 2004] Microsoft: DirectX 9 Shader Debugger Tool,
http://www.microsoft.com/windows/directx/graphics/tools

3 -21

http://www.ati.com/developer/ashli.html.
http://developer.nvidia.com/page/cg_main.html
http://www.apple.com/macosx/tiger/coreimage.html
http://www.microsoft.com/windows/directx
http://www.microsoft.com/windows/directx/graphics/tools

[Olano et al. 2003] Olano Marc, Bob Kuehne and Maryann Simmons: Automatic Shader
Level of Detail, Proceedings of Graphics Hardware 2003, Eurographics/ACM
SIGGRAPH

[GLSL 2004] OpenGL Shading Language,
http://opengl.org/documentation/oglsl.html

[OpenEXR 2004] ILM: OpenEXR High Dynamic Range Image Format,
http://www.openexr.com/

[PCIExpress 2004] PCI Express: Performance Scalability for the Next Decade,
http://www.pcisig.com/specifications/pciexpress/

[Purcell & Pradeep 2003] Shadesmith: A Fragment Program Debugger,
http://graphics.stanford.edu/projects/shadesmith/

[RenderMan® 1986] Pixar: RenderMan® Shading Language,
https://renderman.pixar.com/

[Sharp 2000] Brian Sharp: Subdivision Surface Theory,
http://www.gamasutra.com/features/20000411/sharp_01.htm

3 -22

http://opengl.org/documentation/oglsl.html
http://www.openexr.com/
http://www.pcisig.com/specifications/pciexpress/
http://graphics.stanford.edu/projects/shadesmith/
https://renderman.pixar.com/
http://www.gamasutra.com/features/20000411/sharp_01.htm

	Chapter 3: Shading Compilers
	Shading Compilers

