Rendering Subdivision Surfaces on
Graphics Hardware

Avi Bleiweiss

Silicon Graphics Inc.
September 4t 1996

Motivation

Subdivision is a powerful paradigm for the generation of arbitrary
topology. Direct representation of a surface provides an attractive
option for fast rendering.

The detailed simulation of related algorithms will lead to an efficient
pipe design that supports subdivision well.

Agenda

° Background

e OpenGL API

Py Implementation
e Performance

® Realization

Background

Repeated refinement of an initial control mesh

Doo/Sabin and Cutmull/Clark [78] used quadrilateral meshes

Loop [87] introduced a simple triangulated mesh scheme
that leads to a tangent plane smooth surface (C1)

Interpolating schemes by Dyn et al. [40] and Zorin et al. [92]

Multi-resolution analysis

Background (cnt'd)

@ Loop's refinement step ~ splitting each triangle by four

VAN

@ Vertices of a refined mesh are computed as an affine combination
of vertices in the unrefined one

V:’: valence = 5 1 z
)
‘)
-) ! === a(n) ---- 1 1]
¢ ’ Ay
, ~
P \ ’l \\ / \ /

vertex mask edge mask

Background (cnt’d)

Subdivision surfaces are defined as the limit of an infinite refinement
PrOCGSS

Limit point can be expressed as an affine combination of initial vertex
position

Tangent vectors to the limit surface can be easily extracted and normals
are computed using cross—product of tangents

I\ AP ERN

\/ \/ \/ '\ \/ \/

Chme (1

position mask tangent mask

Background {cnt'd)

Hoppe et al. [94] expanded subdivision rules to accurately model
an object with tangent discontinuities

Edges can be either smooth or sharp

Vertices are classified as either smooth, dart, crease. or corner
whether they have zero, one, two or more sharp incident edges, respectively

Crease vertex is regular if there are exactly two smooth edges between
the sharp ones. Otherwise - jrregular

All subdivision rules are expressed as masks, are flexible and extensible

Subdivision rules apply to both positions and attributes

Background (ent'qd)

] Key applications:

— Arbitrary mesh paradigm is a key strength and direct representation
avoids trimming bottleneck in rendering

— Geometry compression is evident by the virtue of refinement. A typical
level of 3 or 4 can yield ratios in the range of 8 to 32

~ Continuous LOD control is accomplished by Interpolating adjacent
subdivision levels (avoids storing geometry at different LOD’s at the
application space)

Background (cnt’d)

e Kari Pulli and Mark Segal work: mesh editor, and slidir\g window subdivision
scheme - basis for the effort presented

e Goals:

~ OpenGL API proposal, transport layer definition for IR
- Complete software implementation of sliding window subdivision method
- Add LOD morph capability

- Evaluate portability and performance in a GE (like) domain

OpenGL API

e New primitive into the pipe:_tripair patch

tstrip tripair patch

generic tripair patch

® The tripair patch topology is composed of a tripair core (blk),
neighboring triangles (blu) and corner support edges (red)

OpenGL API (cnt’'d)

® Considerations:

~ Discrete vs pointer based commands

= Minimal impact on user, provision for caching of patches
— Patch definition to allow for topological degeneracy

- Distinguish smooth from non-smooth patch for chosing a fast
computation path

® Simpler to go with pointer based commands

® Trifan per-corer definition for vertex data, vertex and edge tags (ccw)

® SGIX_subdiv_patch extension

OpenGL API (cnt'd)

@® Patch control Commands:

(GLenum pname, GLfloat param);

gloubdivPatchParameterfSGIX
glSubdivPatchParameteriSGIX(GLenum pname, GLint param);

These commands set refinement level (float for LOD morph) and mesh
format.

~ pname takes:

GL_SUBDIV_PATCH_LEVEL_SGIX
GL_SUBDIV_PATCH_FORMAT_SGIX

- param for format takes:

GL_V3F

GL_CA4UB_V3F
GL_T2F_V3F

- GL_T2F_C4UB_V3F

® The user can query refinement level, mesh format, and maximum valence
dllowed for the implementation

OpenGL API (cnt’'d)

® Patch data command:

gloubdivPatchSGiX(const GLvoid **vertexData,

const GLvoid #¥vertexTags,
const Gl.void **edgeTags?;

Tag data takes:

GL_SUBDIV_PATCH_SMOOTH_SGIX
GL_SUBDIV_PATCH_CREASE_REGULAR_BIT_SGIX
GL_SUBDIV_PATCH_CREASE _IRREGULAR_BIT_SGIX

GL_SUBDIV_PATCH_DART_BIT_SGIX
GL_SUBDIV_PATCH_CORNER_BIT_SGIX
GL_SUBDIV_PATCH_CONICAL_BIT_SGIX
GL_SUBDIV_PATCH_SHARP_BIT_SGIX

® Smooth patch is denoted by null’'s for both the vertchags and edgeTags
pointers

Implementation

Patch topology is on a 2D grid
Naive approach to subdivision uses memory in the order of output size

Sliding window subdivision scheme facilitates incremental subdivision,
balanced with tstrip output rendering

Three rows worth of strided vertex data memory is required for each
level (scratch) plus two rows for tstrip output (fifo)

Maximum refinement level supported is 4

Sliding window method is partitioned into initialization and core phases

Implementation (cnt’d)

® At initialization, three rows of vertex data are generated per refinement level

O @) 5

Initialization (10 (blk) => 11 (blu))

Implementation (cnt’d)

® At the conclusion of Initialization, one row of vertices is ready for
output

® Incremental row is generated by either subdividing vertical/diagonal
edges or by subdividing horizontal edges and updating old vertices

® A newly generated row at level j produces two new rows in level j+1

® The core code resembles unrolied recursion (maximum refinement level
s 4)

® Pseudo code for sliding window core (last two levels):

while(rowllevel-1] < tllevel -1] {
DoRow{levei-1)
tllevel] = rowllevell + 2;
while(row(level] < tlievel] {
DoRow{level);
DoRender(level);

}

Implementation (cnt’d)

@® lllustration of sliding window method core:

level O level 1

Implementation (cnt'd)

® For each incremental row that hits the finest refinement level, as set
by the user:

- Limit surface positions are computed

- Once GL_AUTO_NORMAL is enabled, tangents and normals are
computed

— Morph LOD:

~ Finalize incremental row for one before finest refinement
level

- Linearly (or bilinearly) interpoldte between two rows of
adjacent refinement levels, using an LOD transfer function

«,
®
o
®
O_
®
®)
L

Implementation (cnt'd)

e Topological degeneracy is transparent to the subdivision process. It
only affects OpenGL’'s transport layer or the final rendering part

e Examples:

® No mate tripair is refined as a normal one and is bounded by
its diagonal at the output

® Gracefully handle exceeding maximum valence

Implementation (cnt’'d)

® Memory and arithmetic characteristic of sliding window method:

~ Scratch area (words) to keep three rows for each refinement level
as a function of mesh format (assuming four refinement levels):

GL_V3F 414+30n
GL_C4UB_V3F 466+70n

GL_T2F_V3F 640+50n
GL_T2F_C4UB_V3F 1242+90n

n — maximum support corner vertices (6 is minimum and 8 is
decent)

- A fifo worth of 34 vertices is needed to keep two output renderir\g
rows (morph LOD requires 51 vertices)

~ Mask math is coefficient table driven, 256 table entry is adequate

- Unigue instructions: integer modulus (for addressing, 5 bits suffices),
“inverse-sqrt (for computing normalized normals) :

Performance

® Benchmark ran on a 196MHz R10K (ver 2.4) with 1MB cache,
three levels of refinement (128 tris per patch)

Figures in table reflect subdivision compute speed (In parents,
IR rendering numbers per-GE):

Kpatches/sec MTstrips/sec
no light, no texture 5.2 667 (2.0)
light, no texture 4.5 576 (1.5)
no light, texture 3.7 480 (1.5)
light, texture 3.2 419 (1.0)

@ Subdivision to geometry pipeline performance ratio is 1 : 3

Realization

® Driver software:
— Subdivision surfaces — new surface representation

- View dependent LOD for geometry: single representation of
eometry per—frame, reduction of detall, figure out LOD transfer
unction (Performer, Jenny)

- Tessellation assist: cuts down computation on the host, reduces
bandwidth to the pipe, conversion of representations (Inspector,
Brian C.)

- NURBS: support for both subdivision and evaluation nside the
pipe (Zicheng)

Realization (cnt’d)
e Pipe:
- Subdivision surfaces representation trades off bandwidth and memory

with computation

~ Transport layer: atomic definition for state embedded primitive
~ Patch distribution out of a resident patch cache

~ Inter and intra patch parallelism: patch per processor or patch across
many processors, respectively

- Load balance: front vs back end of the pipe

Realization (cnt’'d)

IR:

- Patch definition split into two pipe commands: one for vertex data
and one for state (tags and f Iags)

~ Scratch size inside the GE limits finest refinement level to three for some
of the formats. Fifo size limits maximum corner support vertices

~ Sliding window scheme can explore SIMD to a certain extent (dominant
patch boundary computations are single cored)

- Save/restore scratch data per incrementdl row

~ Mask coefficients and integer modulus tables stored in Eram

Realization (cnt’'d)
® Future:

- Atomic, variable Iength patch definition into the pipe

- Dedicated scratch size of 2K words and fifo worth of 50 vertices
per—patch, close to a floating point core.

- Parallel cores fed from a sta ing aread will edge, SIMD. Can
leverage off a dot product engine

- Fast mask coefficient table access, integer modulus instruction,
single cycle bit test, address registers (24)

- Criteria for success: single node GE 3x faster than the Beast

summary
® Conclusions

— Loop’s subdivision surfaces representation is simple, direct and extensible

- Sliding window method for subdivision fits OpenGL‘s ucode paradigm, once
memory constraints are met

— Parallelism is preferred over SIMD

— Mask driven computation are matrix based and can Ieverage, off a dot
product engine realization

~ We need more exposure to high level software (reference implementation
ported to IR, RE and indigo)

