
A Sequence-to-Graph Model for Visualizing Math Operation Programs

Avi Bleiweiss
BShalem Research

Sunnyvale, CA, USA
avibleiweiss@bshalem.onmicrosoft.com

Abstract
We propose to improve student intuition for
interpreting solutions of math word problems.
Rather than a linear textual sequence that em-
beds operations and operands, often in an un-
clear manner, we offer a succinct program vi-
sualization of annotated formulas.

1 Description

In Table 1, we review our contribution to visualize
an annotated formula in red.

problem: a horse is tethered to one corner of
a rectangular grassy field 36 m by 20 m with
a rope 18 m long . over how much area of the
field can it graze ?

formula: divide(multiply(power(18, const_2),
const_pi), const_4)

edge list: (divide, multiply), (multiply, power),
(power, 18), (power, const_2), (multiply,
const_pi), (divide, const_4)

program plot:

divide

multiply

power

18 const_2

const_pi

const_4

Table 1: MathQA generates an annotated formula
for each math word problem, of which we construct
a graph and extract an edge list. The program plot uses
symbolic labels that abide by the MathQA lists of oper-
ations and constants. Graph plot generated by iGraph.

In our experiments, we used MathQA (Amini
et al., 2019), a large-scale dataset composed of

GRE-level math problems that is widely used as
a benchmark for university admission in the US.
MathQA introduces a representation language to
model operation programs in both a linear and an-
notated forms, and explores a neural architecture
that exploits a sequence-to-program model and in-
tegrates knowledge of problem classification.

MathQA has the pivotal objective for an opera-
tion program to yield the correct solution once all
operations are executed. While our study performs
a sequence-to-graph transform and highlights the
importance of formula visualization to enhance stu-
dent learning experience and comprehension of
math problems.

We note that the graph complexity of a program-
matic math problem is fairly low with about fif-
teen nodes on average, and hence the clarity pro-
vided by graph rendering. In our experiments, we
used iGraph (Csardi and Nepusz, 2006) for network
modeling and interpretation. iGraph requires that
the names of program operations and literals must
be explicitly unique, and programs that mix unary
and binary operations are supported to a limited
extent.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Han-
naneh Hajishirzi. 2019. MathQA: Towards
interpretable math word problem solving with
operation-based formalisms. In Conference of
the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL):
Human Language Technologies, pages 2357–
2367, Minneapolis, Minnesota. Association
for Computational Linguistics.

Gabor Csardi and Tamas Nepusz. 2006. The igraph
software package for complex network re-
search. InterJournal, Complex Systems:1695.

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268

	Description

