CUDA and Multi-Core Gaming

Dan Amerson

Avi Bleiweiss <A NVIDIA.

Agenda <3

NVIDIA

® Couple of examples of non-graphics uses for
the GPU

® Dan Amerson of Emergent Game
Technologies

* Integrating CUDA into Gamebryo Floodgate

® Avi Bleiweiss of NVIDIA
® Multi-agent Navigation on the GPU

Introduction §%A

® Dan Amerson

® Technical Director, Gamebryo Core
Runtime

® Emergent Game Technologies

Revisiting CUDA <2

® At NVISION 08, | presented some
Investigations into CUDA.

* | posed this question.
® Should | use CUDA in my game engine?

® The answer was:
& Start prototyping.
® Widespread use is not here yet.

What Was The Experiment? ,S%A

® Integrate Floodgate with CUDA

® Floodgate is a stream processing engine
within Gamebryo.

® Compare a number of approaches using
CUDA to a CPU side approach on a quad
core PC.

2

Floodgate in Action WA

BadSushi

The Actual Experiment y— N

Vertex Morphing Demo

Testing Approaches S,%A

® CPU: Quad-core PC scaled from 115 fps

serial processing to 180 fps with 3 worker
threads.

® GPU: For GPU resident tasks, CUDA was
about 2X faster.

® Approach 1: 50 fps
® Approach 2: 145 fps

® Approach 3: 400 fps

GPU Test Approach 1

® Approach
® Upload input blend shapes each frame.
® Download results each frame.
® Lock D3D VB and upload results again.

® Results
® Performance scaled negatively to 50 fps.
® If inputs and outputs need to cross the

bus per frame, CUDA is not necessarily a
good fit.

<3

NVIDIA

GPU Test Approach 2 S,%A

® Approach

® Treat input blend shapes as static to reduce
bus transfers.

® Still performing two transfers per frame,
read back from CUDA and D3D upload.

® Performance exceeds single threaded
execution at 145 FPS.

® Opportunities exist for single-threaded
code.

GPU Test Approach 3 ,S,%A

® Approach
® Use D3D interoperability methods.
® No VB transfers across the bus.

® Fastest performance of any configuration
at 400 FPS.

® Exceeds performance of a quad-core PC
with 3 worker threads in test.

Analysis >

NVIDIA

* Time dominated by PCle transfers in early
approaches.

® Average transfer was .261ms for a 240KB
buffer.

* We're seeing about .87 GB/s by this data
much lower than peak PCle rates.

® Possibly a result of using safer runtime
APls instead of driver APIs.

® cudaMemcpy vs. cuMemcpyDtoHAsync et
al.

Transfer Test - Stats

>

NVIDIA

Runtime

Mixed

Driver

Min

0.19952ms

0.10902ms

0.06646ms

Max

1.25872ms

3.00557ms

1.15594ms

Mean

0.26149ms

0.94669ms

0.10312ms

StDev

0.01738ms

0.03554ms

0.02232ms

That Was Then... >

NVIDIA

* At NVISION, the message was to invest at
a prototype level.

® API was finicky.
® Public drivers didn’t have support for CUDA.
* Lots of additional/future work was required.

Since Then... S%A

® CUDA 2.1 was released.

® Fixes some of the issues and improves ease-
of-use. E.g, More robust D3D
interoperability.

® There’s still some learning curve.
* NVIDIA is very responsive to bug reports.

® Support is in public drivers.
* Beginning with 177.81 drivers.
® CUDA 2.1 requires 181.20 drivers.

And Now... S%A

® D3D11 is much more imminent.

® D3D11 Compute Shaders offer a model very
similar to CUDA.

* Getting started on CUDA prepares you for
D3D11 and Win7.

® There are other options in the short term,
but CUDA has fewer limitations.
®* CS4.xonD3D10.
® D3D11 betas.

Ask the Question Again... ,S%A

® Should | use CUDA in my game engine?

® Yes, the time is now.

® CUDA is the best way to put this technology
in @ game today and prep for tomorrow.

® D3D11 is around the corner.

Thank you >

NVIDIA

® Thank you to:

® Randy Fernando, NVIDIA developer
relations, and Vincent Scheib for help with
original NVISION talk.

* lgnacio Castano and Cem Cebenoyan at
NVIDIA for help with the GDC version.

® Come by Booth 5818 in North Hall
® amerson@emergent.net

mailto:amerson@emergent.net

| Agent Na

Mult

iweiss

i Ble

ANY;

<A NVIDIA.

Reasoning <3

NVIDIA.

® Explicit
® Script, storytelling
State machine, serial
® Implicit
® Compute intensive
& Fits SIMT architecture well

® Navigation planning

® Collision avoidance

Motivation <X

NVIDIA

® Computational intelligence
® On CUDA platform

® Alternative pathfinding
® Intuitive multi threading PhysX™
® Flat, nested parallel
® Scalable, real time
Dense environments

Problem

Planner

e Searches a global, optimal path
e From start to goal

e Locally, avoids collisions with
e Static, dynamic objects
e Exploits autonomous sensing

>

NVIDIA

Simulator

e Visually compelling motion

e Economical memory footprint
e A subset of compute units

e Linear scale with # characters

Solution

& Multi agent model
® Pre-computed roadmap

® Extended Velocity Obstacles
® Global path integration
® No explicit communication
® GPU specific optimization
® Nearest neighbors search

<3

NVIDIA.

Outline <3

NVIDIA

® Algorithm

® Implementation
® Results

& Takeaways

Paper: Bleiweiss, A. 2009. Multi Agent Navigation on GPU

=

NVIDIA.

Algorithm

Visibility <3

NVIDIA.

® Two sets of edges
® Visible roadmap node pairs A point is visible from
® Goal to unblocked nodes another point -

& A* search, shortest path
® From goal to any node

® Line segment obstacles

¢ Efficient sweep line method

If the connecting line doesn’t
intersect any static obstacles.

Velocity Obstacles

Avoidance velocity set for
¢ Dynamic agents among
® Passively moving obstacles

Prone to oscillations
Reciprocal Velocity Obstacles
® ldentical, collision free mind

Complement set

® Admissible agent velocities

>

NVIDIA

Velocity Obstacles:
[Fiorini and Shiller 1998]

[’rOi;l (vg) ={vy [Apyvy— vz)NBO-A%0)

Reciprocal Velocity Obstacles:
[Van Den Berg et al. 2008]

RV O3 (v5,v,) = (V4 | 2V'4 — vy EVO5(v5) }

Simulation <3

NVIDIA

VO = velocity obstacle
RVO = reciprocal velocity obstacle
do
hash
construct hash table
simulate
compute preferred velocity
compute proximity scope
foreach velocity sample do
foreach neighbor do
if OBSTACLE then VO
elseif AGENT then RVO
resolve new velocity
update
update position, velocity
resolve at-goal
while not all-at-goal

® Simulator advances until

® All agents reached goal

¢ Path realigned towards

® Roadmap node or goal

1:
2:
3:
4.
5:
6:
/:
8:
Sk

T
NEO

® Agent, velocity parallel

O e = TS =N
N UuRAEWw

>

NVIDIA.

Implementation

Workflow

® CUDA kernel pair

® simulate and update

® Deterministic resources

® Allocated at initialization
& Per frame output

® At-goal, path waypoints
® Split frame, multi GPU

® Device-to-device copy

Loop
Control

Hash Table

CUDA Al
Simulator

>

NVIDIA

Physics/
Render

Challenges <3

NVIDIA.

Hiding memory latency

Divergent threads

Hash construction cost

Thread safe RNG

Data Layout <3

NVIDIA

Persistent resources

i i float, int)
Reside in global memory { float, int }

Static, read-only data

.-
L -

L -

-

m
S —

Texture bound, linear

Thread aligned data '
Better coalescing { of fset, count }

Consistent access pattern
® Improves bandwidth

Nearest Neighbors Search <3

Naive, exhaustive scheme
® 0O(n?) total running time
Spatial hash based

® 3D point to a 1D index
® Signed distance rule

Logarithmic traversal time

Per frame construction

® Current agent’s position

NVIDIA

For each agent:

e Select random,
3D position samples

For each sample:

e Hash position
e Compute distance
* |Insert, sort distance

.

()

Execution Model

1D grids and blocks
Static shared memory

Hide ALU ops latency
® 10-12 cycles FMA

Lessen memory latency

® Independent math ops

Per agent RNG

>

NVIDIA

Kernel Registers Shared Local Constant

(B) (B) (B)
simulate 32 116 244 208
update 14 60 0 56

Property Kernel

simulate update
Threads / Block 128 128
Warps / Multiprocessor 16 32
Occupancy 50% 100%

Nested Parallel <3

NVIDIA

® Flat parallel limi S
at paralie ted candidate(CUAgent™* agents, int index,
® Nested more scalable CUNeighbor* neighbors)

® Thread grid hierarchy { float3 v. float t-

® Independent child grids CUAgent a = agents[index];

® All running same kernel if(lgetThreadld()) v = a.prefvelocity;
else v = velocitySample(a);

Grid global atomic sync t = neighbor(a, agents, neighbors, v);

® Threads exceed HW max

float p = penalty(a, v, t);

® No added memory atomicMin(a.minpenalty, p);
if(p == a.minpenalty) a.candidate =v;

>

NVIDIA.

Results

Methodology

Environment

e Vista 32 bits, CUDA 2.1

e Simulation-only

e Flat parallel

e Copy to/from device included

Property

Vendor

Core Clock (MHz)
Memory Clock (MHz)
Global Memory (MB)
Multiprocessors

Total Threads

GTX280
NVIDIA
601
1107
1024
30
500-20000

<3

NVIDIA

>

Experiments nVIDIA

Timestep Proximity Velocity Frames

Neighbors Distance 5am ples
0.1 10 15 250 1200

Dataset Agents Thread
Blocks

Evacuation 500 4
1000 8

Roadmap: 5000 40

211 segments
429 nodes 10000 73
20000

Footprint >

NVIDIA

Agents © Goals = Hash

500 5000 10000 20000

Agents

«

>
NVIDIA

-—GPU With Hash

I
T
I

~(GPU No Hash

300 -

duIL.1j/39sW

Running Time

«

NVIDIA

-—CPU 16 Threads

=
&
T
=
=
=
&)
t

Frame Rate

=

NVIDIA.

IELGEVENS

Limitations

Hash table construction
Single threaded

Thread load imbalance

Non, at-goal agent mix

.

Hash motion artifacts

Area under sampling

»

Shared memory SW cache
® Constraint, 32B per thread

<3

NVIDIA

Future Work

.

Exploit shared memory
Further hide latency

.

At-goal agent extraction
Unified thread block

Up hash sampling quality

)

L)

Dynamic obstacles, goals
® GPU visibility port

<3

NVIDIA

Performance

Parameter
Hash Speedup

Simulation Acceleration

FPS (for 10K agents)
Nested vs. Flat
Cost ()

NVIDIA GTX280
4X
Up to 77X
Up to 4.8X
18
Up to 2X
399

INTEL X7350
Little to None
Single thread

Sixteen threads

3.75
Difficult to program
2400

>

NVIDIA

Summary

® Computational intelligence
® Maps well on GPU

& Multi agent solution
® Compact, scalable
® Further optimization

® Nested data parallel
& Multi GPU system

® Al, physics integration

<3

NVIDIA.

>

NVIDIA

Questions?
Thank You!

How To Reach Us <3

NVIDIA

® Paper:

® http://tinyurl.com/MultiAgentGPU-paper-2009
® During GDC

® Expo Suite 656, West Hall

® Developer Tool Open Chat, 1:30 to 2:30 pm (25t-27t")
® Online

® Twitter: nvidiadeveloper

® Website: http://developer.nvidia.com
® CUDA: http://www.nvidia.com/cuda
® Forums: http://developer.nvidia.com/forums

http://tinyurl.com/MultiAgentGPU-paper-2009
http://developer.nvidia.com/
http://www.nvidia.com/cuda
http://developer.nvidia.com/forums

