
CUDA and Multi-Core Gaming

Dan Amerson
Avi Bleiweiss

Programming Track

Agenda

Couple of examples of non-graphics uses for
the GPU

Dan Amerson of Emergent Game
Technologies

Integrating CUDA into Gamebryo Floodgate

Avi Bleiweiss of NVIDIA

Multi-agent Navigation on the GPU

Dan Amerson

Technical Director, Gamebryo Core
Runtime

Emergent Game Technologies

Introduction

At NVISION 08, I presented some
investigations into CUDA.

I posed this question.

Should I use CUDA in my game engine?

The answer was:

Start prototyping.

Widespread use is not here yet.

Revisiting CUDA

Integrate Floodgate with CUDA

Floodgate is a stream processing engine
within Gamebryo.

Compare a number of approaches using
CUDA to a CPU side approach on a quad
core PC.

What Was The Experiment?

Floodgate in Action

The Actual Experiment

CPU: Quad-core PC scaled from 115 fps
serial processing to 180 fps with 3 worker
threads.

GPU: For GPU resident tasks, CUDA was
about 2X faster.

Approach 1: 50 fps

Approach 2: 145 fps

Approach 3: 400 fps

Testing Approaches

Approach

Upload input blend shapes each frame.

Download results each frame.

Lock D3D VB and upload results again.

Results

Performance scaled negatively to 50 fps.

If inputs and outputs need to cross the
bus per frame, CUDA is not necessarily a
good fit.

GPU Test Approach 1

Approach

Treat input blend shapes as static to reduce
bus transfers.

Still performing two transfers per frame,
read back from CUDA and D3D upload.

Performance exceeds single threaded
execution at 145 FPS.

Opportunities exist for single-threaded
code.

GPU Test Approach 2

Approach

Use D3D interoperability methods.

No VB transfers across the bus.

Fastest performance of any configuration
at 400 FPS.

Exceeds performance of a quad-core PC
with 3 worker threads in test.

GPU Test Approach 3

Time dominated by PCIe transfers in early
approaches.

Average transfer was .261ms for a 240KB
buffer.

We’re seeing about .87 GB/s by this data
much lower than peak PCIe rates.

Possibly a result of using safer runtime
APIs instead of driver APIs.

cudaMemcpy vs. cuMemcpyDtoHAsync et
al.

Analysis

Transfer Test - Stats

Runtime Mixed Driver

Min 0.19952ms 0.10902ms 0.06646ms

Max 1.25872ms 3.00557ms 1.15594ms

Mean 0.26149ms 0.94669ms 0.10312ms

StDev 0.01738ms 0.03554ms 0.02232ms

At NVISION, the message was to invest at
a prototype level.

API was finicky.

Public drivers didn’t have support for CUDA.

Lots of additional/future work was required.

That Was Then…

CUDA 2.1 was released.

Fixes some of the issues and improves ease-
of-use. E.g, More robust D3D
interoperability.

There’s still some learning curve.

NVIDIA is very responsive to bug reports.

Support is in public drivers.

Beginning with 177.81 drivers.

CUDA 2.1 requires 181.20 drivers.

Since Then…

D3D11 is much more imminent.

D3D11 Compute Shaders offer a model very
similar to CUDA.

Getting started on CUDA prepares you for
D3D11 and Win7.

There are other options in the short term,
but CUDA has fewer limitations.

CS 4.x on D3D10.

D3D11 betas.

And Now…

Should I use CUDA in my game engine?

Yes, the time is now.

CUDA is the best way to put this technology
in a game today and prep for tomorrow.

D3D11 is around the corner.

Ask the Question Again…

Thank you to:

Randy Fernando, NVIDIA developer
relations, and Vincent Scheib for help with
original NVISION talk.

Ignacio Castano and Cem Cebenoyan at
NVIDIA for help with the GDC version.

Come by Booth 5818 in North Hall

amerson@emergent.net

Thank you

mailto:amerson@emergent.net

Multi Agent Navigation
on the GPU

Avi Bleiweiss

Reasoning

Explicit

Script, storytelling

State machine, serial

Implicit

Compute intensive

Fits SIMT architecture well

Navigation planning

Collision avoidance

Motivation

Computational intelligence

On CUDA platform

Alternative pathfinding

Intuitive multi threading

Flat, nested parallel

Scalable, real time

Dense environments

CUDATM

Game

AI PhysXTM

DirectX®

Driver

Problem

Planner

• Searches a global, optimal path
• From start to goal

• Locally, avoids collisions with
• Static, dynamic objects

• Exploits autonomous sensing

Simulator

• Visually compelling motion

• Economical memory footprint

• A subset of compute units

• Linear scale with # characters

Solution

Multi agent model

Pre-computed roadmap

Extended Velocity Obstacles

Global path integration

No explicit communication

GPU specific optimization

Nearest neighbors search

Outline

Algorithm

Implementation

Results

Takeaways

Paper: Bleiweiss, A. 2009. Multi Agent Navigation on GPU

Algorithm

Visibility

Two sets of edges

Visible roadmap node pairs

Goal to unblocked nodes

A* search, shortest path

From goal to any node

Line segment obstacles

Efficient sweep line method

A point is visible from
another point -

If the connecting line doesn’t
intersect any static obstacles.

Velocity Obstacles

Avoidance velocity set for

Dynamic agents among

Passively moving obstacles

Prone to oscillations

Reciprocal Velocity Obstacles

Identical, collision free mind

Complement set

Admissible agent velocities

Velocity Obstacles:
[Fiorini and Shiller 1998]

Reciprocal Velocity Obstacles:
[Van Den Berg et al. 2008]

Simulation

Simulator advances until

All agents reached goal

Path realigned towards

Roadmap node or goal

Agent, velocity parallel

1: VO = velocity obstacle
2: RVO = reciprocal velocity obstacle
3: do
4: hash
5: construct hash table
6: simulate
7: compute preferred velocity
8: compute proximity scope
9: foreach velocity sample do

10: foreach neighbor do
11: if OBSTACLE then VO
12: elseif AGENT then RVO
13: resolve new velocity
14: update
15: update position, velocity
16: resolve at-goal
17: while not all-at-goal

nested

flat

p

e

r

f

r

a

m

e

Implementation

Workflow

CUDA kernel pair

simulate and update

Deterministic resources

Allocated at initialization

Per frame output

At-goal, path waypoints

Split frame, multi GPU

Device-to-device copy

CUDA AI
Simulator

Loop
Control

Hash Table

Physics/
Render

Challenges

Hiding memory latency

Divergent threads

Hash construction cost

Thread safe RNG

Data Layout

Persistent resources

Reside in global memory

Static, read-only data

Texture bound, linear

Thread aligned data

Better coalescing

Consistent access pattern

Improves bandwidth

Nearest Neighbors Search

For each agent:

• Select random,
3D position samples

For each sample:

• Hash position

• Compute distance

• Insert, sort distance

Naïve, exhaustive scheme

O(n2) total running time

Spatial hash based

3D point to a 1D index

Signed distance rule

Logarithmic traversal time

Per frame construction

Current agent’s position

Execution Model

Kernel Registers Shared
(B)

Local
(B)

Constant
(B)

simulate 32 116 244 208

update 14 60 0 56

1D grids and blocks

Static shared memory

Hide ALU ops latency

10–12 cycles FMA

Lessen memory latency

Independent math ops

Per agent RNG

Property Kernel

simulate update

Threads / Block 128 128

Warps / Multiprocessor 16 32

Occupancy 50% 100%

Nested Parallel

Flat parallel limited

Nested more scalable

Thread grid hierarchy

Independent child grids

All running same kernel

Grid global atomic sync

Threads exceed HW max

No added memory

__global__ void
candidate(CUAgent* agents, int index,

CUNeighbor* neighbors)
{

float3 v, float t;
CUAgent a = agents[index];

if(!getThreadId()) v = a.prefvelocity;
else v = velocitySample(a);
t = neighbor(a, agents, neighbors, v);

float p = penalty(a, v, t);
atomicMin(a.minpenalty, p);
if(p == a.minpenalty) a.candidate = v;

}

Results

Methodology

Property GTX280 X7350

Vendor NVIDIA Intel

Core Clock (MHz) 601 2930

Memory Clock (MHz) 1107 1066

Global Memory (MB) 1024 8192

Multiprocessors 30 4

Total Threads 500-20000 16

Environment

• Vista 32 bits, CUDA 2.1

• Simulation-only

• Flat parallel

• Copy to/from device included

Experiments

Dataset Agents Thread
Blocks

Evacuation 500 4

1000 8

5000 40

10000 79

20000 157

Timestep Proximity Velocity
Samples

Frames

Neighbors Distance

0.1 10 15 250 1200

Roadmap:
211 segments
429 nodes

Footprint

Running Time

Frame Rate

Takeaways

Limitations

Hash table construction

Single threaded

Thread load imbalance

Non, at-goal agent mix

Hash motion artifacts

Area under sampling

Shared memory SW cache

Constraint, 32B per thread

Future Work

Exploit shared memory

Further hide latency

At-goal agent extraction

Unified thread block

Up hash sampling quality

Dynamic obstacles, goals

GPU visibility port

Performance

Parameter NVIDIA GTX280 INTEL X7350

Hash Speedup 4X Little to None

Simulation Acceleration
Up to 77X Single thread

Up to 4.8X Sixteen threads

FPS (for 10K agents) 18 3.75

Nested vs. Flat Up to 2X Difficult to program

Cost ($) 399 2400

Summary

Computational intelligence

Maps well on GPU

Multi agent solution

Compact, scalable

Further optimization

Nested data parallel

Multi GPU system

AI, physics integration

Questions?
Thank You!

How To Reach Us

Paper:

http://tinyurl.com/MultiAgentGPU-paper-2009

During GDC

Expo Suite 656, West Hall

Developer Tool Open Chat, 1:30 to 2:30 pm (25th-27th)

Online

Twitter: nvidiadeveloper

Website: http://developer.nvidia.com

CUDA: http://www.nvidia.com/cuda

Forums: http://developer.nvidia.com/forums

http://tinyurl.com/MultiAgentGPU-paper-2009
http://developer.nvidia.com/
http://www.nvidia.com/cuda
http://developer.nvidia.com/forums

