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ABSTRACT
This paper introduces a rendering engine that raises the quality
level of real-time rendering. The renderer combines fast polygon
rendering capability with robust performance for many of the popu-
lar advanced 3D rendering algorithms. Performance of many of the
advanced rendering functions is less than a basic polygon rendering
rate, but only by a factor of two to four. The advanced rendering
functions supported include anti-aliased lines, texture mapping,
transparency, compositing, spheres with specular highlights, gen-
eral anti-aliasing of polygonal images, shadowing, CSG display,
and radiosity acceleration. A rather unique microcode approach
at the pixel processing level, combined with a cost effective pixel
memory structure are the real driving force behind the renderer.
This rendering engine has been incorporated into the overall ar-
chitecture of the Stardent 3000 Graphics Supercomputer, where it
is tightly coupled to system memory and to a scalable scalar and
vector floating point compute processors.
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1 INTRODUCTION
During the past few years the thrust of high performance rendering
architectures have been mostly directed toward achieving faster
polygon rendering rates (100KQuadrilaterals/sec) [1, 2, 6]. We have
also observed a growing interest in the, application of advanced
rendering techniques with some ported to high end workstations.
Some of the systems though have the tendency to exhibit significant
performance degradation, which often may prohibit the use of the
complex rendering function. The scope of this paper is to demon-
strate a hardware solution to the advanced rendering problem at
the pixel level.

1.1 Background
We will examine current approaches to the design of high perfor-
mance renderers in light of parallelism, pixel memory structure,
and programmability, focusing on the requirements to support
advanced rendering algorithms.
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The most effective approach to the distribution of pixel process-
ing power has been a SIMD array of processors operating on a
virtual pixel space [2, 8]. In this approach, processors share com-
mon control store and a small common scratch pad. Pixel memory
bandwidth requirements are addressed either by having the pro-
cessor driving a small memory locally [8], or by sharing system
memory resources via a very wide system bus [2]. Executing the
same instruction out of a common control store is efficient enough
as long as image coherency ts maintained. However, processor uti-
lization begins to suffer when a function requires non–coherent
memory mapping operations. Some examples are: pixel distances
to line centers, perspective texture mapping, specular shading for
quadratic primitives, and non-aligned bitmaps.

Advanced rendering capability translates very quickly to a high
bits per pixel figure. As such, memory structure and allocation has a
predominant influence on the renderer cost. In a global sense, pixel
memory is partitioned into a rendertng buffer and a viewing buffer.
The use of DRAM based system memory as a virtual rendering
buffer combined with a single buffer, VRAM based, video buffer [8]
provides favorable reduction in memory cost. However. some of
this cost advantage is diluted because of the need for a very wide
bus to system memory.

Pixel level programmability, generally takes the form of down-
loadable microcode capability [8]. Its major contribution to a system
is to provide a graceful path for newly developed algorithms, as
they become available. It is well known that pixel level functions
tend to have a very wide option spread. Therefore, the realization
of pixel based microcode in a SIMD architecture, where code is
straightforward with minimal branching, results in many versions
of nearly identical code.

The renderer architecture we will describe below, solves the
advanced rendering problem by providing high processor utilization
over a broad range of rendering operations, while capturing the
advantage of DRAM based rendering memory, without the need
for a very wide bus to system memory, and by using a unique
compact ROM based microcode control that still provides a rich set
of graphics functionality.

1.2 Design Goals
Our main goal for the renderer was to achieve basic rendering
rate of 200KQuadrilaterals/sec and 500KVectors/sec, and at the
same time support a variety of rendering algorithms operating
as fast as possible, consistent with technological constraints and
within reasonable economic margins (a single board solution). This
goal was further subdivided into the following five implementation
aspects:
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• Simplicity: all rendering functions must be built on top of a
simple, robust, and cost effective hardware algorithm foun-
dation. This foundation must provide a high level of fidelity
in terms of drawing accuracy and consistency.

• Balance: renderer performance has tomatch graphics pipeline
geometry computation performed by its compute engine
peer, in both anti-aliased lines and polygon rendering.

• Quality: anti-aliasing of lines and polygon outlines must be
of high quality and retain performance of greater than the
basic rendering rate divided by two.

• Functionality: advanced rendering functions (mentioned
above) must be performed at a rate greater than the basic
rendering rate divided by four.

• Growth: it must provide a growth path for the future with
regard to improved functionality and new algorithm support.

The paper proceeds with an overview of the algorithm foun-
dation used to implement the rendering functions, followed by a
detailed description of the overall architecture implementation. We
conclude with a presentation of performance analysis details.

2 ALGORITHM FOUNDATION
Our hardware implementation was driven by algorithms. The al-
gorithms are reviewed next in a very broad sense and their key
baselines are discussed. The image produced as a results of a photo-
realistic rendering on our hardware is depicted in Figure 1.

2.1 Primitive Representation
The backbone of the supported algorithms is the linear function
representation: f (x,y) = Ax + By +C . This representation applies
to both primitives such as line, polygon, and sphere, and also to
edges and attributes, for example, color and depth. The simplicity
and robustness of this representation, reduces pipeline setup code
and provides a highly desirable rotational invariant shading model
in image space. The linear representation was extensively enhanced
by the implementation of elaborate boolean functions that support
the anti-aliasing of lines or polygon outlines and the drawing of
wide lines (further discussed in Section 4).

A bounding box is an integral part of each primitive (Figure
2). It forms a geometric domain that bounds the area for which
pixels are scanned in order to be touched. Furthermore, the bound-
ing box notion has a global effect on overall system performance,
particularly when advanced functionality is required. Intersection
tests against rectangular areas are simpler and faster, and improve
the efficiency of pipeline clipping code. They allow for primitive
pre-pruning when a composite operation of disjoint objects is per-
formed and finally, a pixel intensive compute operation can be
limited to an active rectangular area (a result of primitive bounding
box unionization) as opposed to computing over the entire view
port.

2.2 Scanning
Twomajor considerations drove our scanning implementation strat-
egy: parallelism at the geometric domain level (in addition to pixel
interleaving) and primitive specific scan efficiency.

Our design has the notion of synchronized scanning in three
geometric domains: primitive, bounding box, and attribute. Pixels

to be touched are determined in the primitive domain traversal.
Here, edge functions are evaluated to classify each pixel as being
‘in’ (inside the primitive), as being ’on’ (on a primitive edge), or as
being ’out’ (outside the primitive). Bounding box scan computes
pixel memory addresses at each scan step. This scan algorithm
views all four bounding box edges as being traversal clip bound-
aries. Hitting a clip boundary causes either a traversal turn back
or a traversal completion event. Attribute domain scan, applies to
primitive patterning and bitmap operations, where a table index
is computed. This scan algorithm is identical to the bounding box
scan, where pattern offset and pattern repeat count are used as clip
boundaries and form a flexible pattern mapping onto a primitive.

Scan efficiency is addressed by implementing three scan modes
(illustrated in Figure 2): staircase (for line drawing), bi-direct (for
polygon, sphere, and rectangle fill), and scan-line (for copy and
bitmaps). In the staircase mode ’on’ and ’out’ information combined
with the knowledge of being to the ’left’ or to the ’right’ of the line
[10] sets the scan direction.

2.3 Generalized Alpha
Advanced rendering algorithms require generalized context with
regard to alpha channel information. Current restrictive use of
the alpha channel solely for the presentation of pixel coverage
(anti-aliasing and compositing) has been extended in our design. In
addition, we provide application specific content such as transmis-
sion factor (transparency), depth-count (shadowing), and boolean
flags (texture and CSG).

2.4 Multipass Rendering
Refined progression of image generation when using advanced
algorithms is very fundamental to the renderer design. It operates
in a succession of rendering stages, each composed of one or several
draw phases followed by one or several compute phases. The nature
of the draw and compute phases are application specific. In general,
the full scene is always traversed in each of the draw phases, and
in the compute phase, a graphic operation applies to all pixels of
the active scene bounding-box.

3 ARCHITECTURE
The support of advanced rendering, raises a twofold memory band-
width issue. The first one is at the renderer to system memory link
where copy speeds are critical for some of the multi-pass functions.
The second is the classical pixel level where we opted to select an
interleaved scheme that allows extensive use of page mode refer-
ences. The rendering engine consists of a matrix of five by four
pixel processing nodes, each handling every fifth pixel on every
fourth scan line, that are driven by four high performance graphics
IO processors (IOPs) (Figure 3). The renderer is implemented as
a DMA module in the Stardent 3000 system and performs 64-bit
word read and write transactions over the S_bus [6]. The IOPs in-
terface to the S_bus on one end, and drive four pixel buses - one
per same scan line interleave - on the other. The S_bus bandwidth
is 128 MBytes/sec and the aggregate pixel bus bandwidth is 256
MBytes/sec. Each pixel processing node is comprised of an inte-
grated pixel evaluator (IPE) tightly coupled to a rendering buffer -
draw buffer, and a viewing buffer - display buffer. The draw buffer
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Figure 1: Photorealistic rendering on graphics hardware using theDynamicObject Rendering Environment (DORE): showcases
global illumination, procedural textured objects, multi-pass full scene anti-aliasing, true transparency, and shadows (umbra
and penumbra)

Figure 2: Scan modes

is DRAM based and the display buffer is implemented with VRAMs.
Once a given instruction is received by the pixel processing nodes,
each IPE executes its own microinstructions out of its local control
store. As such. the renderer effectively becomes a MIMD array of
processing elements. Each IPE is associated with a programmable
Id that defines its physical interleave position.

The software interface is simple and encompasses twenty com-
pact high level graphics instructions. Their format provides minimal
setup at the pipeline level. Graphic instructions have a generic form
consisting of a command packet followed by an optional pixel data
structure. In system memory, a scene is constructed by generating
a sequence of instructions stored in a command buffer. Pixel data
blocks referenced by command packets are stored in a separate data
buffer. This decoupling of command and data buffers establishes a

Figure 3: Renderer architecture overview

very efficient way of performing area copies between system mem-
ory and pixel memory. Essentially, pixel data is in virtual space and
the associated command packet maps it to physical screen space.
Mapping of pixel data to the interleaved pixel memory structure is
entirely transparent to the application programmer.

The video-out section is composed of three RAMDACs - one per
color channel, each having five colormap tables - that are controlled
by the IOPs. Various video and stereo display modes are controlled
by an integrated video timing generator.
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Pixel memory organization and the two ASICs which are used
to implement the rendering engine are further discussed.

3.1 Graphics IO Processor
Architecture overview of the IOP is depicted in Figure 4. High
performance area copy between system memory and pixel memory
is accomplished via the IOPs’ four channel DMA controller, along
with local bidirectional fifo memory in its data paths. This allows
the renderer to operate at the S_bus bandwidth limit for most area
copy operations. The four channel DMA controller has the ability
to transfer four raster scan lines in parallel by updating four pixel
data buffer pointers simultaneously.

Figure 4: Graphics IO processor

Awell established, high bandwidth link between systemmemory
and the renderer allows for an efficient incorporation of objects
rendered by alien platforms or images generated by new techniques.
Typical pixel data sources include raster devices, surface rendering,
and ray-tracing accelerators, or any other random point model-
ing algorithms. The DMA controller provides a flexible backdoor
interface by supporting the following pixel data formats:

• 2D, unpacked: 32 bit word per pixel (’rgba’)
• 2D, packed : 32 bit word per multiple pixels (bitmap, 8 bit)
• 3D, virtual : 64 bits word per pixel (’z’, ’rgba’J
• 3D, physical: 96 bits word per pixel (’xy’, ’z’, ’rgba’)

The pixel bus is a 32 bit bi-directional bus that operates in two
distinct modes: broadcast and data dependent. In broadcast mode,
each IPE receives the same instruction and parses command packet
parameters (such as bounding box boundaries and linear function
coefficients) to their location internally. Upon completion of parsing,
the instruction gets executed without further external synchroniza-
tion requirements. Each IPE has a two deep instruction queue that
provides full overlap between current instruction execution and
next instruction broadcast. In data dependent mode, subsequent to
the command packet reception, the IPE synchronizes with the IOP
on a per pixel data transaction.

The graphics IO Processor ASIC is implemented in 1.5 micron
Compacted Array CMOS gate array. It contains 38000 gates in a
299 pin package.

3.2 Pixel Memory
Pixel memory organization is scalable and evolves from a basic two
dimensional array, defined as a quadrant. Quadrant array size is

1280 by 1024 by 36 bits. The draw buffer consists of four quadrants
(2560 x 2048 x 36) and the display buffer is configurable: one quad-
rant for a 256K VRAM system, or four quadrants for a 1M VRAM
system. The total number of bits per pixel available on our design
is either 180 or 288, depending on system configuration. IPE pixel
memory quadrants and pixel format are shown in Figure 5.

Figure 5: Pixel memory organization

The accommodation of advanced functionality requires the ex-
tension of the basic pixel memory space utilization (double buffered
color, depth and alpha). In our design the extensions ere:

• Complex math at the pixel level: expanded functionality im-
plies broader pixel arithmetic scoping, beyond the typical
multiply_accumulate capability. Because pixel memory band-
width is inherent to the interlaced nature of the architecture,
required math functions such as inverse (texture), square
root (sphere), and power (specular shading) are efficiently
implemented by means of a lookup table.

• Table locality: the performance of mapping applications (pat-
terning, filtering, texture, and picking) are greatly enhanced
when supported at the pixel level. Also, sufficient local table
storage can significantly reduce context switching overhead.

• Image buildup buffer: the notion of refined progression in
image generation is implemented via a temporary image
buffer (for color, alpha, and depth). A partial composite or the
partial integration of an image is incrementally accumulated
in this buffer, as rendering progresses.

From an application view point, pixel memory allocation (for 2D
or 3D images, tables, pixmaps, and temporary image buildup) is at
the quadrant granularity level. The only exception is that the ’z’
and ’rgba’ quadrants have to be horizontally aligned to allow for a
fast 3D page mode based memory reference.

3.3 Integrated Pixel Evaluator
IPE hardware (Figure 6) is optimized for drawing quadrilaterals.
Lines, triangles and spheres are natural subsets, because they all use
a single or multiple edge function evaluators. Our implementation
has eight parallel linear function interpolators: one for each edge,
one for each color (r, g, b) and one for depth. Each interpolator in-
corporates an adder, accumulator, and an operand muxing scheme
that allows for an interleaved (5A or 4B) or non-interleaved (A or
B) scan step in either the x or y directions. Interpolator width is
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optimized to its required accuracy (for example, the depth interpo-
lator is 46-bit wide and yields a final 32-bit ’z’). A dedicated boolean
logic module provides the interpolator control function which per-
forms primitive interleaved scan, non-interleaved adjustment to
IPE id, line width control, endpoint detection for lines and polygons,
perpendicular distance computation, and color and depth clipping.

Figure 6: Integrated pixel evaluator

Bounding box scan logic is comprised of symmetric pixel row
and column address generation. Bounding box and attribute clip
circuitry provide end of scan line, scan direction reversal, and scan
termination control. Address generation is synchronized with a
variety of pixel memory control sequences. These control sequences
include scalar and vector (page mode) write, read, and read-modify-
write, as well as flash write and data transfer transactions.

A centralized multiplier_accumulator (MAC) unit - 16 x 16 bit
multiplier followed by a 16 bit adder - operates on multiple, on-chip
generated source data and on pixel memory destination data. Eight,
twelve and sixteen bit operand modes are supported.

Pixel logic is the final processing stage before pixel data is pre-
sented at the memory data bus (36 bits). This stage performs clip
mask, visibility test, plane mask, and boolean and arithmetic opera-
tions on source and destination pixel data.

The control implementation of the IPE was a main technological
challenge of the renderer. This was evident for both the incorpora-
tion of wide scale functionality and meeting performance bounds
that were set forth as design goals. The IPE control scheme is mi-
crocode based with a unique flow construction. At the IPE level,
all graphics instructions are broken into pixel control executables
(PCEs). PCEs form a six-stage deep, pipeline control flow. The IPE
control scheme is very flexible with the default flow direction shown
in Figure 7. Each pipe stage can be either looped or bypassed.

Figure 7: PCE control

IPE Id alignment to the first pixel in the bounding box is per-
formed in the adjustment stage. Since we incorporate free direction
line drawing and overlapped area copy, Id alignment is supported
at each corner of the bounding box. Subsequently, a parallel scan
for both the primitive and the bounding box domains take place. A
post attribute scan, when required, always follows the bounding
box scan. To iterate, there are PCEs associated with each scan mode,
in each domain. The draw_compute stage executes either a featured
draw kernel or a compute kernel in one of the multi-pass functions
(this is further discussed in section 4.). Compositing covers all bi-
nary and unary blending operations as described in [11], with the
additional enhancement of pixel multiply operation (c_src× c_dst).
Tiles, stipples, and fonts are the patterning executables, and mem-
ory_op performs pixel logic functions embedded in pixel memory
references.

Video (and memory) refresh events interrupt the PCE control
flow. Each PCE has a single or multiple interrupt window openings
where an interrupt may be sensed and further processed by specific
video refresh PCEs. Video refresh events may occur at any pipe
stage and our interrupt service latencies meet the requirements of
very high display refresh rates.

Each control pipe stage is represented by a selection of PCEs.
All PCEs (initialization, functional, video refresh, and diagnostics)
are stored in an on-chip 1K word ROM, where each word is 104-bit
wide. The very wide microinstruction word enables fine grain par-
allelism throughout all IPE hardware functions. Pipe stage overlap
is incorporated when feasible. Intra-stage control is performed by
a microsequencer, which provides ROM addresses, based on either
microinstruction content or an external branch condition. Inter-
stage jumps are controlled by a special subroutine mapper which
decodes the pixel function to be executed combined with the status
of the current pipe stage, and derives the destination jump stage.
All jumps are performed in a single clock cycle.

The IPE ASIC is implemented in 1.5 micron standard cell CMOS
and exploits a high level of macrocell integration. It contains 52000
gates 1n a 155 pin package (Figure 8)

Figure 8: Authentic routing plot of the pixel processor (1.5
micron technology)
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Figure 9: Rendered teapot on hardware in both fill and out-
line drawing modes

4 RENDERING FUNCTION MAPPING
The algorithm discussions presented in this section focus on pixel
level functionality. Application issues are addressed only when
they have a direct bearing at the pixel level or at the pixel memory
quadrant allocation. Each function, with its full option spread, is
mapped onto a concatenation of multiple PCEs. Figure 9 illustrates
basic rendering of a teapot in both fill and outline drawing modes.

4.1 Line Drawing
Line drawing utilizes a normalized linear representation for an edge
of the form:

f (x,y) =
Ax + By +C

sqrt(A2 + B2)

At each pixel, the value of this normalized edge function is the
perpendicular distance from the pixel to the edge. This is key to the
way lines or polygon outlines are drawn. At each staircase scan step
the IPE compares the distance value f to a predefined line width
(major axis dependent) parameter and determines ’on’ drawable
pixels.

Line drawing parameters include width, style, depth-cueing, and
anti-aliasing. Wide line drawing and line style are further covered
in Section 4.4.

Figure 10: Line anti-aliasing

Depth-cueing and anti-allastng are table driven operations. A
superposition of a depth-cue function (linear or non-linear) and a
filter function (filter shape and size, line widths, and screen gamma)
are contained in a single table. The index to the table is a concate-
nation of two eight bit values: pixel depth - ’z’ - and pixel distance
to the centerline. The low eight bits, address the filter function

component of the table. The high eight bits, address the depth-cue
component of the table. The table occupies 8 bits of depth in one
of the pixel memory quadrants. Table entries are used to scale ’on’
pixel intensity.

Anti-aliased line drawtng also requires logic for endpoint de-
tection. The renderer has the notion of an endpoint region - the
triangle formed by the corner of the line bounding box and a line
which is perpendicular to the line drawn at the line endpoint (Figure
10). Here the bounding box is extended in proportion to the filter
size in pixels. In anti-aliased line drawing, three edge functions are
evaluated in parallel - one for the line drawn and two for the pair
of perpendicular lines. Note that pixels at which the perpendicular
edge function value is negative are considered to be in an endpoint
region. The intensity of endpoint pixels is scaled by a value which
is proportional to a radial distance approximation. Line body pixel
intensity is scaled in proportion to its perpendicular distance. The
table entry used for intensity scaling may optionally be written to
the alpha channel for each drawn pixel. These alpha channel values
are then available for further image compositing application.

4.2 Polygon Drawing
Planar and convex quadrilaterals (quads) and triangles are the polyg-
onal primitives supported in our implementation. There are three
fundamental polygon drawing modes, namely fill only, outline only,
and combined fill and outline. Polygon outline and line drawing are
identical and share the same level of functionality, such as wide vec-
tors, depth-cueing, and anti-aliasing. Polygon patterning is further
covered in section 4.4.

In quad drawing, four (or three for triangles) edge functions are
evaluated in parallel. Pixels which are classified as ’on’ or ’in’ in
a bi-direct scan are considered to be drawable. Pixels which are
’on’ can be shaded per the preset foreground color or they may be
smoothly shaded in the same way as ’in’ pixels.

Figure 11: Polygon anti-aliasing

Anti-aliased polygonal outline drawing is viewed as an interme-
diate step between aliased images and general anti-aliasing (dis-
cussed in Section 4.8 ). This is sustainable both in terms of quality
and speed. Polygon endpoint region detection is much more in-
volved when compared to the line endpoint detection task. All
possible edge intersection areas are detected and multiple perpen-
dicular distance selection rules are applied. In an endpoint region
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(illustrated in Figure 11), the minimum distance value of the two
edge functions involved is selected as the filter table index where
both functions evaluate to a positive number. On the other hand,
maximum distance is picked where both functions have a negative
sign. The end result is that undesired endpoint highlighting are
avoided.

In the default pixel shading mode, the three color channels are
evaluated in parallel, each to a final eight bit intensity level. Addi-
tionally, the renderer supports single channel, twelve bit pseudo
color rendering, where the interpolated shading value is used to
index a table holding 4096 full color (24 bits) entries. A single pixel
memory quadrant can store up to sixteen unique color tables that
are selected on a per window basis.

4.3 Sphere Drawing
Sphere drawing is based on the algorithm presented in the work by
Fuchs et al. [7]. One quadrant of pixel memory is used to store (x2+
y2). The data from this table is made available as an input to one of
the IPE interpolators. This linear edge function combined with the
quadratic (x2 + y2) data, evaluates ’in’ and ’out’ sphere pixels. The
depth and ’r’ (evaluates diffuse light term N · L) interpolators have
access to a square root function stored in another pixel memory
quadrant. The square root operator serves both for the visibility test
and for the evaluation of a shading table index. Multiple shading
tables (up to 16, 4K by 16 bits each), for a variety of diffused and
specular lightmodels, are stored adjacent to the square root function
in pixel memory. We note that filled circle drawing is a subset of
sphere drawing.

4.4 Windowing
We assume an X windowing environment for an application to
run, and most of the graphic functions defined by Xllb are directly
supported in our hardware. Though not directly related to the
subject of advanced rendering, hardware solutions at the pixel level
are still required to maintain interactive performance goals, given
a user interface environment. The following highlights some of the
drawing extensions and window clipping functionality we support:

• wide line drawing: line width could be equal to one, two or
four pixels. Endpoint join style is restricted to a non-filled
triangular notch. Wide line drawing is primarily applicable
to straight horizontal and vertical lines.

• primitive patterning: line style, tiles, and stipples are table
oriented operations. Up to eight two dimensional pattern
arrays of 32 by 32 pixels, 32 bits each, are stored locally in
pixel memory. All four Xlib fill styles are supported namely
solid, stippled, opaque_stippled, and tiled. The application
task for primitive patterning is limited to pattern table selec-
tion and to the specification of offset and repeat count in the
pattern domain.

• bitmap: the application of bitmaps apply to fonts, icons and
images. Bitmaps can be non-aligned with regard to either
word or bounding box boundaries. Bitmap color assignment
is implemented in a stippling manner where stippled and
opaque_stippled mode are supported.

• clip mask: primitive clipping to window boundaries is han-
dled by comparing pixel clip mask to a predefined, registered

destination window Id. Area copy masking is per either a
source window Id, a destination window Id, or both.

4.5 Compositing
The PCE structure is very flexible in providing a choice for selecting
source data for compositing. It can be either an image data residing
in system memory or interpolated data, derived at the IPE level.
Compositing arithmetic is an eight bit operand mode and can be
performed under visibility test. The availability of pixel multiply
operation allows for a unique intensity scaling per color channel
(shaded texture).

4.6 Texture
We provide a broad range of support for texture mapping. The base-
line for the implementation assumes screen order scanning (inverse
mapping) and perspective projection. In texture mode, linear rep-
resentation of texture space coordinates (u, v) replaces the default
color representation as part of a polygon instruction. Two out of the
three IPE color lnterpolators, linearly evaluate texture coordinates
as the first part of the inverse mapping process. Supported texture
modes of operation are:

• point sampling only, local texture: perspective inverse map-
ping requires a division by ’z’. This is accomplished by stor-
ing an inverse function in one of the pixel memory quadrants.
Furthermore, in this mode texture values are locally stored
in another pixel memory quadrant. Each texture pixel con-
sists of 32 bits and may include an alpha value for further
compositing. The user picks one of two texture table config-
urations:
– single texture, 256 by 256 pJxels
– multi-texture, up to seven tables, each of 64 by 64 pixels
Texture space is point sampled only and no filtering is per-
formed .

• filtered texture using summed area lookup [5] in system
memory: in this mode the renderer performs inverse map-
ping and stores texture coordinates (u, v) in one pixel mem-
ory quadrant. Subsequently, the Stardent 3000 vector proces-
sor scans the image bounding box, retrieves texture coordi-
nates and applies repeated integration filtering in a summed
area lookup table form. Filtered texture pixels are then copied
from system memory to the pixel memory. A destination
shaded image is textured by applying the pixel multiply op-
eration to a source filtered texture image. Maximum texture
resolution in this mode is 4K by 4K pixels.

• 2D lookup: in this mode texture coordinates have a broader
application sense. They represent generic scene attributes
(such as temperature, stress, pressure etc.) which are further
superimposed on a rendered image. It is assumed that they
have a linear behavior in a polygonal extent. The renderer
provides a two virtual axes interpolation mode where inter-
polated values are combined to serve as an index to a color
lookup table (64Kx24), stored locally in pixel memory.

4.7 Transparency
The underlying transparency model assumes that scene surfaces
are associated with transmission coefficients to form transparency
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layers. Each image pixel is covered by several layers and the final
shading value at that pixel is an integration of layer shading con-
tributions. The contribution of each layer is proportional to the
sum of transmitted light from a front closest layer combined with
the reflected light of the layer examined. The integration process
terminates when an opaque surface is hit (alpha = 0).

Multi-stage transparency rendering is performed in a succession
of stages, each composed of a closest layer evaluation draw phase,
followed by a shading integration compute phase. An IPE special
visibility test operator evaluates closest layer by comparing pixel
current depth to both the last depth encountered in the current
draw phase and to the last depth that was computed in the previous
draw phase (stored in the buildup buffer).

At each pixel the shading contribution is computed by the IPE
MAC and gets added to the partial shading value stored in a buildup
buffer, by applying the pixel add operation.

4.8 General Anti-Aliasing
A general anti-aliasing rendering stage is comprised of a draw phase
followed by a filter phase. For each draw phase, the image is gener-
ated with a sub-pixel offset, which provides adequate sampling of
a pixel area. The filter phase, adjoined to a draw phase, computes
sub-pixel intensity contribution and integrates the result to the
partially integrated image. Filter arithmetic is handled at the IPE
MAC and assumes 16 bits for both the normalized filter coefficients
and the pixel color channel. The number of rendering stages are
determined by the filter kernel area in pixels. A final normalization
phase truncates the 16 bits to 8 bits color channels.

4.9 Shadowing
The supported shadow algorithm is based on the generation of
shadow volumes [4]. Image generation flow is per light source and
is broken into three parts: a model draw phase, a shadow draw
phase, and an intensity compute phase. In the shadow phase, the
application flags the front and back facing polygons and respec-
tively, a pixel depth-count attribute is incremented or decremented,
based on a visibility rule. A search for shadow pixels having positive
depth-count and a subsequent intensity attenuation operation are
incorporated in the compute phase. Both depth_count updates and
intensity attenuation are performed by the pixel logic stage of the
IPE.

A final ambient thresholding, by applying the pixel ’max’ logic
rule, and a specular light component integration are shading quality
options that may be performed as a post shadow generation pass.

4.10 CSG Display
The display of CSG defined objects, requires the support of set
boolean operations at the pixel level. A normalized CSG tree is
assumed in which paring convex objects are our supported prim-
itives. The tree is broken into subtrees that are unioned together
and set operations at each node are either intersection or difference
[9]. The display of a normalized CSG tree is a recursive process of
primitive paring where a composite image is built up incrementally.

CSG display is implemented as a multi-stage rendering process
where each stage is composed of four phases:

• First object draw phase: front face (if intersection) or back
face (if difference) of a pared object is rendered, as a bounding
box image is saved.

• Rest of objects draw phase: front and back faces of rest of
objects that have a bounding box overlapwith the first paring
object bounding box, are drawn. Boolean flags are set per a
visibility test, per pixel.

• Boolean phase: pixels in the above defined bounding box are
retained or removed if the set boolean operation is intersec-
tion or difference, respectively.

• Union phase: a partial composite is being stored in the image
buildup area.

The number of rendering stages for the entire composite is equal
to the number of objects in the scene.

4.11 Radiosity
The renderer is used as an accelerator for the hemi-cube rendering
part of the form-factor computation [3]. Delta form-factor summa-
tion and the solution of the radiosity equation are both performed
by the system vector floating point processor. The hemi-cube res-
olution in our Implementation is 128 x 128. Hemi-cube rendering
assumes that polygons are ’flat shaded’ and the foreground register
holds object identification (ld) type of data. With the assumption of
no more than 64K objects per scene, we can pack the data for two
five faced hemi-cube cells in one draw buffer quadrant. Therefore,
herni-cube cell data (object Id) is transferred to system memory at
a rate of 64 MCells/sec for further processing.

5 PERFORMANCE
Several aspects of performance are illustrated. The first represents
real vectortzable pipeline code that was written for the Stardent
3000 and reflects how well the rendering engine matches its float-
ing point compute peer in some basic line and polygon drawing
cases. Then, we examine how the engine handles generic system
overheads in an animation application and finally, we characterize
rendering performance over a broad range of graphics and imaging
functions.

Table 1 shows basic graphics performance numbers for two Star-
dent 3000 system configurations: a two and a four processor cluster.
Pipeline code includes transformation, clip test, shading (single
directional light, diffused only), perspective divide, scaling, inte-
ger conversion, and engine setup tasks. All our rendering figures
assume full color, depth buffering on, and window clipping. Num-
bers in the right hand column relate to stand alone rendering rates.
These numbers are by no means peak figures and they rather re-
flect average performance of ten primitives, each with a different
primitive to bounding box pixel ratios.

In an animation type of application, each frame is encountered by
a post rendering area copy overhead due to the separation of draw
and display buffers. This copy is performed at a rate of 156MPix-
els/sec (100MPixels/sec under clip mask). Therefore, for a typical
15 frames/sec (frame = 1280 × 1024 pixels) animated movie, the
expected system draw efficiency,

((frame time − (clear + area copy))/frame time)) × 100



Titan Graphics Supercomputer SIGGRAPH’90, August 1990, Dallas, Texas USA

Figure 12: Wide scale rendering performance

Table 1: System basic rendering performance

Benchmark Size Metrics 2-Processor System 4-Processor System Standalone Graphics

depth-cued polyline 10-pixel KVectors/sec 225 400 490
depth-cued, anti-aliased lines 10 pixel KVectors/sec 192 192 192
smoothly shaded triangles 100 pixel KTriangles/sec 145 225 225
smoothly shaded quads 100 pixel KQuads/sec 92 163 210
smoothly shaded spheres 10 pixel KSpheres/sec 66 66 66
clear (color and depth) 1M pixels MPixels/sec 150 150 150

will be 75 percent. This is translated to a rendering capability of
10K polygons per frame.

Figure 12 shows performance behavior for a wide function scale.
These functions were simulated on our hardware modeling environ-
ment where final PCE code was in place, already loaded. This model
was written in Verilog VHDL and did include gate level (ASICs)
and functional level (S_bus, system memory, and pixel memory)
components. Note that for the pixel intensive functions the renderer
is expected to be the performance limiting factor. Therefore, the
associated measurements effectively reflect system performance
figures.

6 CONCLUSIONS
The renderer architecture was presented in light of its algorithm
foundation, architecture, implementation aspects and performance.
The renderer forms a twofold well matched architecture. Internally,
IPE processing power equates pixel memory bandwidth by widely
exploiting page mode references. Furthermore, as a renderer which
coexists with a floating point vector processor peer, a balanced
system performance over a broad range of graphic functions has
been accomplished.

There are certain implementation limitations associated with
the renderer design. The limitations and possible improvement
extensions are further discussed:
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• Multi-feature type of application: an application that requires
pixel memory space of more than four quadrants to draw
a frame is prone to context switching overhead (moving
data to and from system memory) when running on a 256K
VRAM configured system. However, a 1M VRAM based sys-
tem can handle most of the feature concatenation options
with minimal paging.

• Programmability: although we provide support for a very
rich rendering function base, the possible need for future
user algorithm enhancement is plausible. Because the IPE is
microcode controlled, we observed that a small additional
RAM which stores one PCE per pipe stage could be added
to the existed ROM and form a user microcode space. This
extension will most likely require a geometry shrink step in
VLSI technology.

Interface simplicity at both the graphics software level and the
IPE level, provides a smooth scalable path for either high or low
end type of applications. A Stardent 3000 system can be configured
with up to two rendering engines, one per seat, for the high end
target, and a reduced matrix size of IPEs can serve the low end
market very well.
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